Answer
Verified
406.5k+ views
Hint: Here we will solve this question by comparing both the equations for \[{\text{X}}\] and \[{\text{Y}}\].
Also, we will use the matrix property of subtraction which states that if we need to subtract two matrices as given below:
\[{\text{X = }}\left[ {\begin{array}{*{20}{c}}
a&b \\
c&d
\end{array}} \right]\] and \[{\text{Y = }}\left[ {\begin{array}{*{20}{c}}
e&f \\
g&h
\end{array}} \right]\] , then \[{\text{X - Y = }}\left[ {\begin{array}{*{20}{c}}
{a - e}&{b - f} \\
{c - g}&{d - h}
\end{array}} \right]\].
Complete step by step solution:
Step 1: We have given the two equations as shown below:
\[3{\text{X - Y = }}\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
{ - 1}&1
\end{array}} \right]\] …………………… (i)
\[{\text{X - 3Y = }}\left[ {\begin{array}{*{20}{c}}
0&{ - 1} \\
0&{ - 1}
\end{array}} \right]\] ………………………. (ii)
By multiplying the equation (i) with \[3\], we get:
\[3\left( {3{\text{X - Y}}} \right){\text{ = 3}}\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
{ - 1}&1
\end{array}} \right]\]
By doing the multiplication into the LHS side, we get:
\[{\text{9X - 3Y = 3}}\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
{ - 1}&1
\end{array}} \right]\] ………………. (iii)
Step 2: By subtracting equation (iii) from equation (ii), we get:
\[\begin{gathered}
{\text{9X - 3Y = 3}}\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
{ - 1}&1
\end{array}} \right] \\
{\text{X - 3Y = }}\left[ {\begin{array}{*{20}{c}}
0&{ - 1} \\
0&{ - 1}
\end{array}} \right] \\
\overline {{\text{8X - 0 = 3}}\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
{ - 1}&1
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
0&{ - 1} \\
0&{ - 1}
\end{array}} \right]} \\
\end{gathered} \]
By multiplying \[3\] inside the matrix \[\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
{ - 1}&1
\end{array}} \right]\] into the RHS side, we get:
\[ \Rightarrow {\text{8X = }}\left[ {\begin{array}{*{20}{c}}
3&{ - 3} \\
{ - 3}&3
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
0&{ - 1} \\
0&{ - 1}
\end{array}} \right]\]
By subtracting the matrices into the RHS side of the equation, we get:
\[ \Rightarrow {\text{8X = }}\left[ {\begin{array}{*{20}{c}}
{3 - 0}&{ - 3 - \left( { - 1} \right)} \\
{ - 3 - 0}&{3 - \left( { - 1} \right)}
\end{array}} \right]\]
By opening the brackets inside the matrix and adding the elements in the equation \[{\text{8X = }}\left[ {\begin{array}{*{20}{c}}
{3 - 0}&{ - 3 - \left( { - 1} \right)} \\
{ - 3 - 0}&{3 - \left( { - 1} \right)}
\end{array}} \right]\] , we get:
\[ \Rightarrow {\text{8X = }}\left[ {\begin{array}{*{20}{c}}
3&{ - 2} \\
{ - 3}&4
\end{array}} \right]\]
By bringing \[8\] in to the RHS side of the equation for finding the value of \[{\text{X}}\] , we get:
\[ \Rightarrow {\text{X = }}\dfrac{1}{8}\left[ {\begin{array}{*{20}{c}}
3&{ - 2} \\
{ - 3}&4
\end{array}} \right]\]
Finally, dividing \[8\] with every element inside the matrix, we get:
\[ \Rightarrow {\text{X = }}\left[ {\begin{array}{*{20}{c}}
{\dfrac{3}{8}}&{\dfrac{{ - 2}}{8}} \\
{\dfrac{{ - 3}}{8}}&{\dfrac{4}{8}}
\end{array}} \right]\]
By doing the final division inside the matrix, we get:
\[ \Rightarrow {\text{X = }}\left[ {\begin{array}{*{20}{c}}
{\dfrac{3}{8}}&{\dfrac{{ - 1}}{4}} \\
{\dfrac{{ - 3}}{8}}&{\dfrac{1}{2}}
\end{array}} \right]\]
Step 3: Similarly, for finding the value of \[{\text{Y}}\] we will again repeat the step number (1) and (2) as shown below:
By multiplying the equation (ii) with \[3\], we get:
\[3\left( {{\text{X - 3Y}}} \right){\text{ = 3}}\left[ {\begin{array}{*{20}{c}}
0&{ - 1} \\
0&{ - 1}
\end{array}} \right]\]
By doing the multiplication into the LHS side, we get:
\[3{\text{X}} - 9{\text{Y = 3}}\left[ {\begin{array}{*{20}{c}}
0&{ - 1} \\
0&{ - 1}
\end{array}} \right]\] ………………. (iv)
Step 4: By subtracting the equation (iv) from equation (i), we get:
\[\begin{gathered}
3{\text{X - Y = }}\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
{ - 1}&1
\end{array}} \right] \\
{\text{3X - 9Y = 3}}\left[ {\begin{array}{*{20}{c}}
0&{ - 1} \\
0&{ - 1}
\end{array}} \right] \\
\overline {{\text{0 + 8Y = }}\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
{ - 1}&1
\end{array}} \right] - 3\left[ {\begin{array}{*{20}{c}}
0&{ - 1} \\
0&{ - 1}
\end{array}} \right]} \\
\end{gathered} \]
By multiplying \[3\] inside the matrix \[\left[ {\begin{array}{*{20}{c}}
0&{ - 1} \\
0&{ - 1}
\end{array}} \right]\] into the RHS side, we get:
\[ \Rightarrow {\text{8Y = }}\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
{ - 1}&1
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
0&{ - 3} \\
0&{ - 3}
\end{array}} \right]\]
By subtracting the matrices into the RHS side of the equation, we get:
\[ \Rightarrow {\text{8Y = }}\left[ {\begin{array}{*{20}{c}}
{1 - 0}&{ - 1 - \left( { - 3} \right)} \\
{ - 1 - 0}&{1 - \left( { - 3} \right)}
\end{array}} \right]\]
By opening the brackets inside the matrix and adding the elements in the equation \[{\text{8Y = }}\left[ {\begin{array}{*{20}{c}}
{1 - 0}&{ - 1 - \left( { - 3} \right)} \\
{ - 1 - 0}&{1 - \left( { - 3} \right)}
\end{array}} \right]\] , we get:
\[ \Rightarrow {\text{8Y = }}\left[ {\begin{array}{*{20}{c}}
1&2 \\
{ - 1}&4
\end{array}} \right]\]
By bringing \[8\] in to the RHS side of the equation for finding the value of \[{\text{Y}}\] , we get:
\[ \Rightarrow {\text{Y = }}\dfrac{1}{8}\left[ {\begin{array}{*{20}{c}}
1&2 \\
{ - 1}&4
\end{array}} \right]\]
Finally, dividing \[8\] with every element inside the matrix, we get:
\[ \Rightarrow {\text{Y = }}\left[ {\begin{array}{*{20}{c}}
{\dfrac{1}{8}}&{\dfrac{2}{8}} \\
{\dfrac{{ - 1}}{8}}&{\dfrac{4}{8}}
\end{array}} \right]\]
By doing the final division inside the matrix, we get:
\[ \Rightarrow {\text{Y = }}\left[ {\begin{array}{*{20}{c}}
{\dfrac{1}{8}}&{\dfrac{1}{4}} \\
{\dfrac{{ - 1}}{8}}&{\dfrac{1}{2}}
\end{array}} \right]\]
Therefore \[\because \] \[{\text{Y = }}\left[ {\begin{array}{*{20}{c}}
{\dfrac{1}{8}}&{\dfrac{1}{4}} \\
{\dfrac{{ - 1}}{8}}&{\dfrac{1}{2}}
\end{array}} \right]\] and \[{\text{X = }}\left[ {\begin{array}{*{20}{c}}
{\dfrac{3}{8}}&{\dfrac{{ - 1}}{4}} \\
{\dfrac{{ - 3}}{8}}&{\dfrac{1}{2}}
\end{array}} \right]\]
Note: Students need to take care while solving the addition, subtraction or product of any two matrices. While doing the multiplication you should remember the below points:
The number of columns of the 1st matrix must equal the number of rows of the 2nd matrix.
And the result will have the same number of rows as the 1st matrix, and the same number of columns as the 2nd matrix.
Also, we will use the matrix property of subtraction which states that if we need to subtract two matrices as given below:
\[{\text{X = }}\left[ {\begin{array}{*{20}{c}}
a&b \\
c&d
\end{array}} \right]\] and \[{\text{Y = }}\left[ {\begin{array}{*{20}{c}}
e&f \\
g&h
\end{array}} \right]\] , then \[{\text{X - Y = }}\left[ {\begin{array}{*{20}{c}}
{a - e}&{b - f} \\
{c - g}&{d - h}
\end{array}} \right]\].
Complete step by step solution:
Step 1: We have given the two equations as shown below:
\[3{\text{X - Y = }}\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
{ - 1}&1
\end{array}} \right]\] …………………… (i)
\[{\text{X - 3Y = }}\left[ {\begin{array}{*{20}{c}}
0&{ - 1} \\
0&{ - 1}
\end{array}} \right]\] ………………………. (ii)
By multiplying the equation (i) with \[3\], we get:
\[3\left( {3{\text{X - Y}}} \right){\text{ = 3}}\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
{ - 1}&1
\end{array}} \right]\]
By doing the multiplication into the LHS side, we get:
\[{\text{9X - 3Y = 3}}\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
{ - 1}&1
\end{array}} \right]\] ………………. (iii)
Step 2: By subtracting equation (iii) from equation (ii), we get:
\[\begin{gathered}
{\text{9X - 3Y = 3}}\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
{ - 1}&1
\end{array}} \right] \\
{\text{X - 3Y = }}\left[ {\begin{array}{*{20}{c}}
0&{ - 1} \\
0&{ - 1}
\end{array}} \right] \\
\overline {{\text{8X - 0 = 3}}\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
{ - 1}&1
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
0&{ - 1} \\
0&{ - 1}
\end{array}} \right]} \\
\end{gathered} \]
By multiplying \[3\] inside the matrix \[\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
{ - 1}&1
\end{array}} \right]\] into the RHS side, we get:
\[ \Rightarrow {\text{8X = }}\left[ {\begin{array}{*{20}{c}}
3&{ - 3} \\
{ - 3}&3
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
0&{ - 1} \\
0&{ - 1}
\end{array}} \right]\]
By subtracting the matrices into the RHS side of the equation, we get:
\[ \Rightarrow {\text{8X = }}\left[ {\begin{array}{*{20}{c}}
{3 - 0}&{ - 3 - \left( { - 1} \right)} \\
{ - 3 - 0}&{3 - \left( { - 1} \right)}
\end{array}} \right]\]
By opening the brackets inside the matrix and adding the elements in the equation \[{\text{8X = }}\left[ {\begin{array}{*{20}{c}}
{3 - 0}&{ - 3 - \left( { - 1} \right)} \\
{ - 3 - 0}&{3 - \left( { - 1} \right)}
\end{array}} \right]\] , we get:
\[ \Rightarrow {\text{8X = }}\left[ {\begin{array}{*{20}{c}}
3&{ - 2} \\
{ - 3}&4
\end{array}} \right]\]
By bringing \[8\] in to the RHS side of the equation for finding the value of \[{\text{X}}\] , we get:
\[ \Rightarrow {\text{X = }}\dfrac{1}{8}\left[ {\begin{array}{*{20}{c}}
3&{ - 2} \\
{ - 3}&4
\end{array}} \right]\]
Finally, dividing \[8\] with every element inside the matrix, we get:
\[ \Rightarrow {\text{X = }}\left[ {\begin{array}{*{20}{c}}
{\dfrac{3}{8}}&{\dfrac{{ - 2}}{8}} \\
{\dfrac{{ - 3}}{8}}&{\dfrac{4}{8}}
\end{array}} \right]\]
By doing the final division inside the matrix, we get:
\[ \Rightarrow {\text{X = }}\left[ {\begin{array}{*{20}{c}}
{\dfrac{3}{8}}&{\dfrac{{ - 1}}{4}} \\
{\dfrac{{ - 3}}{8}}&{\dfrac{1}{2}}
\end{array}} \right]\]
Step 3: Similarly, for finding the value of \[{\text{Y}}\] we will again repeat the step number (1) and (2) as shown below:
By multiplying the equation (ii) with \[3\], we get:
\[3\left( {{\text{X - 3Y}}} \right){\text{ = 3}}\left[ {\begin{array}{*{20}{c}}
0&{ - 1} \\
0&{ - 1}
\end{array}} \right]\]
By doing the multiplication into the LHS side, we get:
\[3{\text{X}} - 9{\text{Y = 3}}\left[ {\begin{array}{*{20}{c}}
0&{ - 1} \\
0&{ - 1}
\end{array}} \right]\] ………………. (iv)
Step 4: By subtracting the equation (iv) from equation (i), we get:
\[\begin{gathered}
3{\text{X - Y = }}\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
{ - 1}&1
\end{array}} \right] \\
{\text{3X - 9Y = 3}}\left[ {\begin{array}{*{20}{c}}
0&{ - 1} \\
0&{ - 1}
\end{array}} \right] \\
\overline {{\text{0 + 8Y = }}\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
{ - 1}&1
\end{array}} \right] - 3\left[ {\begin{array}{*{20}{c}}
0&{ - 1} \\
0&{ - 1}
\end{array}} \right]} \\
\end{gathered} \]
By multiplying \[3\] inside the matrix \[\left[ {\begin{array}{*{20}{c}}
0&{ - 1} \\
0&{ - 1}
\end{array}} \right]\] into the RHS side, we get:
\[ \Rightarrow {\text{8Y = }}\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
{ - 1}&1
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
0&{ - 3} \\
0&{ - 3}
\end{array}} \right]\]
By subtracting the matrices into the RHS side of the equation, we get:
\[ \Rightarrow {\text{8Y = }}\left[ {\begin{array}{*{20}{c}}
{1 - 0}&{ - 1 - \left( { - 3} \right)} \\
{ - 1 - 0}&{1 - \left( { - 3} \right)}
\end{array}} \right]\]
By opening the brackets inside the matrix and adding the elements in the equation \[{\text{8Y = }}\left[ {\begin{array}{*{20}{c}}
{1 - 0}&{ - 1 - \left( { - 3} \right)} \\
{ - 1 - 0}&{1 - \left( { - 3} \right)}
\end{array}} \right]\] , we get:
\[ \Rightarrow {\text{8Y = }}\left[ {\begin{array}{*{20}{c}}
1&2 \\
{ - 1}&4
\end{array}} \right]\]
By bringing \[8\] in to the RHS side of the equation for finding the value of \[{\text{Y}}\] , we get:
\[ \Rightarrow {\text{Y = }}\dfrac{1}{8}\left[ {\begin{array}{*{20}{c}}
1&2 \\
{ - 1}&4
\end{array}} \right]\]
Finally, dividing \[8\] with every element inside the matrix, we get:
\[ \Rightarrow {\text{Y = }}\left[ {\begin{array}{*{20}{c}}
{\dfrac{1}{8}}&{\dfrac{2}{8}} \\
{\dfrac{{ - 1}}{8}}&{\dfrac{4}{8}}
\end{array}} \right]\]
By doing the final division inside the matrix, we get:
\[ \Rightarrow {\text{Y = }}\left[ {\begin{array}{*{20}{c}}
{\dfrac{1}{8}}&{\dfrac{1}{4}} \\
{\dfrac{{ - 1}}{8}}&{\dfrac{1}{2}}
\end{array}} \right]\]
Therefore \[\because \] \[{\text{Y = }}\left[ {\begin{array}{*{20}{c}}
{\dfrac{1}{8}}&{\dfrac{1}{4}} \\
{\dfrac{{ - 1}}{8}}&{\dfrac{1}{2}}
\end{array}} \right]\] and \[{\text{X = }}\left[ {\begin{array}{*{20}{c}}
{\dfrac{3}{8}}&{\dfrac{{ - 1}}{4}} \\
{\dfrac{{ - 3}}{8}}&{\dfrac{1}{2}}
\end{array}} \right]\]
Note: Students need to take care while solving the addition, subtraction or product of any two matrices. While doing the multiplication you should remember the below points:
The number of columns of the 1st matrix must equal the number of rows of the 2nd matrix.
And the result will have the same number of rows as the 1st matrix, and the same number of columns as the 2nd matrix.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE