
Solve the following equations: $\dfrac{{xy}}{{ay + bx}} = c,\dfrac{{xz}}{{az + cx}} = b,\dfrac{{yz}}{{bz + cy}} = a$.
Answer
603.6k+ views
Hint- Here, we will simplify the given equations in order to evaluate the values of $x$ ,$y$ and $z$.
Given equations are $\dfrac{{xy}}{{ay + bx}} = c,\dfrac{{xz}}{{az + cx}} = b,\dfrac{{yz}}{{bz + cy}} = a$
The above equations can be re-written as
$
\dfrac{{ay + bx}}{{xy}} = \dfrac{1}{c},\dfrac{{az + cx}}{{xz}} = \dfrac{1}{b},\dfrac{{bz + cy}}{{yz}} = \dfrac{1}{a} \Rightarrow \dfrac{{ay}}{{xy}} + \dfrac{{bx}}{{xy}} = \dfrac{1}{c},\dfrac{{az}}{{xz}} + \dfrac{{cx}}{{xz}} = \dfrac{1}{b},\dfrac{{bz}}{{yz}} + \dfrac{{cy}}{{yz}} = \dfrac{1}{a} \\
\Rightarrow \dfrac{a}{x} + \dfrac{b}{y} = \dfrac{1}{c}{\text{ }} \to {\text{(1) }},\dfrac{a}{x} + \dfrac{c}{z} = \dfrac{1}{b}{\text{ }} \to {\text{(2) }},\dfrac{b}{y} + \dfrac{c}{z} = \dfrac{1}{a}{\text{ }} \to {\text{(3)}} \\
\\
$
Now adding all the above three equations, we have
$
\Rightarrow \dfrac{a}{x} + \dfrac{b}{y} + \dfrac{a}{x} + \dfrac{c}{z} + \dfrac{b}{y} + \dfrac{c}{z} = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a} \Rightarrow 2\left[ {\dfrac{a}{x} + \dfrac{b}{y} + \dfrac{c}{z}} \right] = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a}{\text{ }} \to {\text{(4)}} \\
\Rightarrow 2\left[ {\dfrac{a}{x} + \left( {\dfrac{b}{y} + \dfrac{c}{z}} \right)} \right] = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a} \\
$
Since, we have already shown that $\dfrac{b}{y} + \dfrac{c}{z} = \dfrac{1}{a}$ according to equation (3)
$
\therefore {\text{ }}2\left[ {\dfrac{a}{x} + \dfrac{1}{a}} \right] = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a} \Rightarrow \dfrac{{2a}}{x} + \dfrac{2}{a} = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a} \Rightarrow \dfrac{{2a}}{x} + \dfrac{1}{a} = \dfrac{1}{c} + \dfrac{1}{b} \\
\Rightarrow \dfrac{{2a}}{x} = \dfrac{1}{c} + \dfrac{1}{b} - \dfrac{1}{a} \Rightarrow \dfrac{{2a}}{x} = \dfrac{{ab + ac - bc}}{{abc}} \Rightarrow \dfrac{x}{{2a}} = \dfrac{{abc}}{{ab + ac - bc}} \\
\Rightarrow x = \dfrac{{2{a^2}bc}}{{ab + ac - bc}} \\
$
Considering equation (4) again, we have
$ \Rightarrow 2\left[ {\dfrac{a}{x} + \dfrac{b}{y} + \dfrac{c}{z}} \right] = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a}{\text{ }} \Rightarrow 2\left[ {\dfrac{b}{y} + \left( {\dfrac{a}{x} + \dfrac{c}{z}} \right)} \right] = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a}{\text{ }}$
Since, we have already shown that $\dfrac{a}{x} + \dfrac{c}{z} = \dfrac{1}{b}$ according to equation (2)
$
\therefore {\text{ }}2\left[ {\dfrac{b}{y} + \dfrac{1}{b}} \right] = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a} \Rightarrow \dfrac{{2b}}{y} + \dfrac{2}{b} = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a} \Rightarrow \dfrac{{2b}}{y} + \dfrac{1}{b} = \dfrac{1}{c} + \dfrac{1}{a} \\
\Rightarrow \dfrac{{2b}}{y} = \dfrac{1}{c} + \dfrac{1}{a} - \dfrac{1}{b} \Rightarrow \dfrac{{2b}}{y} = \dfrac{{ab + bc - ac}}{{abc}} \Rightarrow \dfrac{y}{{2b}} = \dfrac{{abc}}{{ab + bc - ac}} \\
\Rightarrow y = \dfrac{{2a{b^2}c}}{{ab + bc - ac}} \\
$
Considering equation (4) again, we have
\[ \Rightarrow 2\left[ {\dfrac{a}{x} + \dfrac{b}{y} + \dfrac{c}{z}} \right] = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a}{\text{ }} \Rightarrow 2\left[ {\left( {\dfrac{a}{x} + \dfrac{b}{y}} \right) + \dfrac{c}{z}} \right] = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a}{\text{ }}\]
Since, we have already shown that $\dfrac{a}{x} + \dfrac{b}{y} = \dfrac{1}{c}$ according to equation (1)
$
\therefore {\text{ }}2\left[ {\dfrac{1}{c} + \dfrac{c}{z}} \right] = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a} \Rightarrow \dfrac{2}{c} + \dfrac{{2c}}{z} + = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a} \Rightarrow \dfrac{{2c}}{z} + \dfrac{1}{c} = \dfrac{1}{b} + \dfrac{1}{a} \\
\Rightarrow \dfrac{{2c}}{z} = \dfrac{1}{a} + \dfrac{1}{b} - \dfrac{1}{c} \Rightarrow \dfrac{{2c}}{z} = \dfrac{{bc + ac - ab}}{{abc}} \Rightarrow \dfrac{z}{{2c}} = \dfrac{{abc}}{{bc + ac - ab}} \\
\Rightarrow z = \dfrac{{2ab{c^2}}}{{bc + ac - ab}} \\
$
Therefore, after solving the given equations we get
$x = \dfrac{{2{a^2}bc}}{{ab + ac - bc}}$, $y = \dfrac{{2a{b^2}c}}{{ab + bc - ac}}$ and $z = \dfrac{{2ab{c^2}}}{{bc + ac - ab}}$.
Note- In this particular problem, equations (1), (2) and (3) are used in equation (4) one by one in order to eliminate the other two variables and solve for the remaining one variable only.
Given equations are $\dfrac{{xy}}{{ay + bx}} = c,\dfrac{{xz}}{{az + cx}} = b,\dfrac{{yz}}{{bz + cy}} = a$
The above equations can be re-written as
$
\dfrac{{ay + bx}}{{xy}} = \dfrac{1}{c},\dfrac{{az + cx}}{{xz}} = \dfrac{1}{b},\dfrac{{bz + cy}}{{yz}} = \dfrac{1}{a} \Rightarrow \dfrac{{ay}}{{xy}} + \dfrac{{bx}}{{xy}} = \dfrac{1}{c},\dfrac{{az}}{{xz}} + \dfrac{{cx}}{{xz}} = \dfrac{1}{b},\dfrac{{bz}}{{yz}} + \dfrac{{cy}}{{yz}} = \dfrac{1}{a} \\
\Rightarrow \dfrac{a}{x} + \dfrac{b}{y} = \dfrac{1}{c}{\text{ }} \to {\text{(1) }},\dfrac{a}{x} + \dfrac{c}{z} = \dfrac{1}{b}{\text{ }} \to {\text{(2) }},\dfrac{b}{y} + \dfrac{c}{z} = \dfrac{1}{a}{\text{ }} \to {\text{(3)}} \\
\\
$
Now adding all the above three equations, we have
$
\Rightarrow \dfrac{a}{x} + \dfrac{b}{y} + \dfrac{a}{x} + \dfrac{c}{z} + \dfrac{b}{y} + \dfrac{c}{z} = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a} \Rightarrow 2\left[ {\dfrac{a}{x} + \dfrac{b}{y} + \dfrac{c}{z}} \right] = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a}{\text{ }} \to {\text{(4)}} \\
\Rightarrow 2\left[ {\dfrac{a}{x} + \left( {\dfrac{b}{y} + \dfrac{c}{z}} \right)} \right] = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a} \\
$
Since, we have already shown that $\dfrac{b}{y} + \dfrac{c}{z} = \dfrac{1}{a}$ according to equation (3)
$
\therefore {\text{ }}2\left[ {\dfrac{a}{x} + \dfrac{1}{a}} \right] = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a} \Rightarrow \dfrac{{2a}}{x} + \dfrac{2}{a} = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a} \Rightarrow \dfrac{{2a}}{x} + \dfrac{1}{a} = \dfrac{1}{c} + \dfrac{1}{b} \\
\Rightarrow \dfrac{{2a}}{x} = \dfrac{1}{c} + \dfrac{1}{b} - \dfrac{1}{a} \Rightarrow \dfrac{{2a}}{x} = \dfrac{{ab + ac - bc}}{{abc}} \Rightarrow \dfrac{x}{{2a}} = \dfrac{{abc}}{{ab + ac - bc}} \\
\Rightarrow x = \dfrac{{2{a^2}bc}}{{ab + ac - bc}} \\
$
Considering equation (4) again, we have
$ \Rightarrow 2\left[ {\dfrac{a}{x} + \dfrac{b}{y} + \dfrac{c}{z}} \right] = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a}{\text{ }} \Rightarrow 2\left[ {\dfrac{b}{y} + \left( {\dfrac{a}{x} + \dfrac{c}{z}} \right)} \right] = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a}{\text{ }}$
Since, we have already shown that $\dfrac{a}{x} + \dfrac{c}{z} = \dfrac{1}{b}$ according to equation (2)
$
\therefore {\text{ }}2\left[ {\dfrac{b}{y} + \dfrac{1}{b}} \right] = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a} \Rightarrow \dfrac{{2b}}{y} + \dfrac{2}{b} = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a} \Rightarrow \dfrac{{2b}}{y} + \dfrac{1}{b} = \dfrac{1}{c} + \dfrac{1}{a} \\
\Rightarrow \dfrac{{2b}}{y} = \dfrac{1}{c} + \dfrac{1}{a} - \dfrac{1}{b} \Rightarrow \dfrac{{2b}}{y} = \dfrac{{ab + bc - ac}}{{abc}} \Rightarrow \dfrac{y}{{2b}} = \dfrac{{abc}}{{ab + bc - ac}} \\
\Rightarrow y = \dfrac{{2a{b^2}c}}{{ab + bc - ac}} \\
$
Considering equation (4) again, we have
\[ \Rightarrow 2\left[ {\dfrac{a}{x} + \dfrac{b}{y} + \dfrac{c}{z}} \right] = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a}{\text{ }} \Rightarrow 2\left[ {\left( {\dfrac{a}{x} + \dfrac{b}{y}} \right) + \dfrac{c}{z}} \right] = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a}{\text{ }}\]
Since, we have already shown that $\dfrac{a}{x} + \dfrac{b}{y} = \dfrac{1}{c}$ according to equation (1)
$
\therefore {\text{ }}2\left[ {\dfrac{1}{c} + \dfrac{c}{z}} \right] = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a} \Rightarrow \dfrac{2}{c} + \dfrac{{2c}}{z} + = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a} \Rightarrow \dfrac{{2c}}{z} + \dfrac{1}{c} = \dfrac{1}{b} + \dfrac{1}{a} \\
\Rightarrow \dfrac{{2c}}{z} = \dfrac{1}{a} + \dfrac{1}{b} - \dfrac{1}{c} \Rightarrow \dfrac{{2c}}{z} = \dfrac{{bc + ac - ab}}{{abc}} \Rightarrow \dfrac{z}{{2c}} = \dfrac{{abc}}{{bc + ac - ab}} \\
\Rightarrow z = \dfrac{{2ab{c^2}}}{{bc + ac - ab}} \\
$
Therefore, after solving the given equations we get
$x = \dfrac{{2{a^2}bc}}{{ab + ac - bc}}$, $y = \dfrac{{2a{b^2}c}}{{ab + bc - ac}}$ and $z = \dfrac{{2ab{c^2}}}{{bc + ac - ab}}$.
Note- In this particular problem, equations (1), (2) and (3) are used in equation (4) one by one in order to eliminate the other two variables and solve for the remaining one variable only.
Recently Updated Pages
Master Class 8 Social Science: Engaging Questions & Answers for Success

Master Class 8 Science: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Full form of MODEM?

What is a numerical label assigned to each device in a network?

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Full form of STD, ISD and PCO

Right to vote is a AFundamental Right BFundamental class 8 social science CBSE

Summary of the poem Where the Mind is Without Fear class 8 english CBSE

