
Solve the following equations: $\dfrac{{xy}}{{ay + bx}} = c,\dfrac{{xz}}{{az + cx}} = b,\dfrac{{yz}}{{bz + cy}} = a$.
Answer
609.6k+ views
Hint- Here, we will simplify the given equations in order to evaluate the values of $x$ ,$y$ and $z$.
Given equations are $\dfrac{{xy}}{{ay + bx}} = c,\dfrac{{xz}}{{az + cx}} = b,\dfrac{{yz}}{{bz + cy}} = a$
The above equations can be re-written as
$
\dfrac{{ay + bx}}{{xy}} = \dfrac{1}{c},\dfrac{{az + cx}}{{xz}} = \dfrac{1}{b},\dfrac{{bz + cy}}{{yz}} = \dfrac{1}{a} \Rightarrow \dfrac{{ay}}{{xy}} + \dfrac{{bx}}{{xy}} = \dfrac{1}{c},\dfrac{{az}}{{xz}} + \dfrac{{cx}}{{xz}} = \dfrac{1}{b},\dfrac{{bz}}{{yz}} + \dfrac{{cy}}{{yz}} = \dfrac{1}{a} \\
\Rightarrow \dfrac{a}{x} + \dfrac{b}{y} = \dfrac{1}{c}{\text{ }} \to {\text{(1) }},\dfrac{a}{x} + \dfrac{c}{z} = \dfrac{1}{b}{\text{ }} \to {\text{(2) }},\dfrac{b}{y} + \dfrac{c}{z} = \dfrac{1}{a}{\text{ }} \to {\text{(3)}} \\
\\
$
Now adding all the above three equations, we have
$
\Rightarrow \dfrac{a}{x} + \dfrac{b}{y} + \dfrac{a}{x} + \dfrac{c}{z} + \dfrac{b}{y} + \dfrac{c}{z} = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a} \Rightarrow 2\left[ {\dfrac{a}{x} + \dfrac{b}{y} + \dfrac{c}{z}} \right] = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a}{\text{ }} \to {\text{(4)}} \\
\Rightarrow 2\left[ {\dfrac{a}{x} + \left( {\dfrac{b}{y} + \dfrac{c}{z}} \right)} \right] = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a} \\
$
Since, we have already shown that $\dfrac{b}{y} + \dfrac{c}{z} = \dfrac{1}{a}$ according to equation (3)
$
\therefore {\text{ }}2\left[ {\dfrac{a}{x} + \dfrac{1}{a}} \right] = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a} \Rightarrow \dfrac{{2a}}{x} + \dfrac{2}{a} = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a} \Rightarrow \dfrac{{2a}}{x} + \dfrac{1}{a} = \dfrac{1}{c} + \dfrac{1}{b} \\
\Rightarrow \dfrac{{2a}}{x} = \dfrac{1}{c} + \dfrac{1}{b} - \dfrac{1}{a} \Rightarrow \dfrac{{2a}}{x} = \dfrac{{ab + ac - bc}}{{abc}} \Rightarrow \dfrac{x}{{2a}} = \dfrac{{abc}}{{ab + ac - bc}} \\
\Rightarrow x = \dfrac{{2{a^2}bc}}{{ab + ac - bc}} \\
$
Considering equation (4) again, we have
$ \Rightarrow 2\left[ {\dfrac{a}{x} + \dfrac{b}{y} + \dfrac{c}{z}} \right] = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a}{\text{ }} \Rightarrow 2\left[ {\dfrac{b}{y} + \left( {\dfrac{a}{x} + \dfrac{c}{z}} \right)} \right] = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a}{\text{ }}$
Since, we have already shown that $\dfrac{a}{x} + \dfrac{c}{z} = \dfrac{1}{b}$ according to equation (2)
$
\therefore {\text{ }}2\left[ {\dfrac{b}{y} + \dfrac{1}{b}} \right] = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a} \Rightarrow \dfrac{{2b}}{y} + \dfrac{2}{b} = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a} \Rightarrow \dfrac{{2b}}{y} + \dfrac{1}{b} = \dfrac{1}{c} + \dfrac{1}{a} \\
\Rightarrow \dfrac{{2b}}{y} = \dfrac{1}{c} + \dfrac{1}{a} - \dfrac{1}{b} \Rightarrow \dfrac{{2b}}{y} = \dfrac{{ab + bc - ac}}{{abc}} \Rightarrow \dfrac{y}{{2b}} = \dfrac{{abc}}{{ab + bc - ac}} \\
\Rightarrow y = \dfrac{{2a{b^2}c}}{{ab + bc - ac}} \\
$
Considering equation (4) again, we have
\[ \Rightarrow 2\left[ {\dfrac{a}{x} + \dfrac{b}{y} + \dfrac{c}{z}} \right] = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a}{\text{ }} \Rightarrow 2\left[ {\left( {\dfrac{a}{x} + \dfrac{b}{y}} \right) + \dfrac{c}{z}} \right] = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a}{\text{ }}\]
Since, we have already shown that $\dfrac{a}{x} + \dfrac{b}{y} = \dfrac{1}{c}$ according to equation (1)
$
\therefore {\text{ }}2\left[ {\dfrac{1}{c} + \dfrac{c}{z}} \right] = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a} \Rightarrow \dfrac{2}{c} + \dfrac{{2c}}{z} + = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a} \Rightarrow \dfrac{{2c}}{z} + \dfrac{1}{c} = \dfrac{1}{b} + \dfrac{1}{a} \\
\Rightarrow \dfrac{{2c}}{z} = \dfrac{1}{a} + \dfrac{1}{b} - \dfrac{1}{c} \Rightarrow \dfrac{{2c}}{z} = \dfrac{{bc + ac - ab}}{{abc}} \Rightarrow \dfrac{z}{{2c}} = \dfrac{{abc}}{{bc + ac - ab}} \\
\Rightarrow z = \dfrac{{2ab{c^2}}}{{bc + ac - ab}} \\
$
Therefore, after solving the given equations we get
$x = \dfrac{{2{a^2}bc}}{{ab + ac - bc}}$, $y = \dfrac{{2a{b^2}c}}{{ab + bc - ac}}$ and $z = \dfrac{{2ab{c^2}}}{{bc + ac - ab}}$.
Note- In this particular problem, equations (1), (2) and (3) are used in equation (4) one by one in order to eliminate the other two variables and solve for the remaining one variable only.
Given equations are $\dfrac{{xy}}{{ay + bx}} = c,\dfrac{{xz}}{{az + cx}} = b,\dfrac{{yz}}{{bz + cy}} = a$
The above equations can be re-written as
$
\dfrac{{ay + bx}}{{xy}} = \dfrac{1}{c},\dfrac{{az + cx}}{{xz}} = \dfrac{1}{b},\dfrac{{bz + cy}}{{yz}} = \dfrac{1}{a} \Rightarrow \dfrac{{ay}}{{xy}} + \dfrac{{bx}}{{xy}} = \dfrac{1}{c},\dfrac{{az}}{{xz}} + \dfrac{{cx}}{{xz}} = \dfrac{1}{b},\dfrac{{bz}}{{yz}} + \dfrac{{cy}}{{yz}} = \dfrac{1}{a} \\
\Rightarrow \dfrac{a}{x} + \dfrac{b}{y} = \dfrac{1}{c}{\text{ }} \to {\text{(1) }},\dfrac{a}{x} + \dfrac{c}{z} = \dfrac{1}{b}{\text{ }} \to {\text{(2) }},\dfrac{b}{y} + \dfrac{c}{z} = \dfrac{1}{a}{\text{ }} \to {\text{(3)}} \\
\\
$
Now adding all the above three equations, we have
$
\Rightarrow \dfrac{a}{x} + \dfrac{b}{y} + \dfrac{a}{x} + \dfrac{c}{z} + \dfrac{b}{y} + \dfrac{c}{z} = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a} \Rightarrow 2\left[ {\dfrac{a}{x} + \dfrac{b}{y} + \dfrac{c}{z}} \right] = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a}{\text{ }} \to {\text{(4)}} \\
\Rightarrow 2\left[ {\dfrac{a}{x} + \left( {\dfrac{b}{y} + \dfrac{c}{z}} \right)} \right] = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a} \\
$
Since, we have already shown that $\dfrac{b}{y} + \dfrac{c}{z} = \dfrac{1}{a}$ according to equation (3)
$
\therefore {\text{ }}2\left[ {\dfrac{a}{x} + \dfrac{1}{a}} \right] = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a} \Rightarrow \dfrac{{2a}}{x} + \dfrac{2}{a} = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a} \Rightarrow \dfrac{{2a}}{x} + \dfrac{1}{a} = \dfrac{1}{c} + \dfrac{1}{b} \\
\Rightarrow \dfrac{{2a}}{x} = \dfrac{1}{c} + \dfrac{1}{b} - \dfrac{1}{a} \Rightarrow \dfrac{{2a}}{x} = \dfrac{{ab + ac - bc}}{{abc}} \Rightarrow \dfrac{x}{{2a}} = \dfrac{{abc}}{{ab + ac - bc}} \\
\Rightarrow x = \dfrac{{2{a^2}bc}}{{ab + ac - bc}} \\
$
Considering equation (4) again, we have
$ \Rightarrow 2\left[ {\dfrac{a}{x} + \dfrac{b}{y} + \dfrac{c}{z}} \right] = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a}{\text{ }} \Rightarrow 2\left[ {\dfrac{b}{y} + \left( {\dfrac{a}{x} + \dfrac{c}{z}} \right)} \right] = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a}{\text{ }}$
Since, we have already shown that $\dfrac{a}{x} + \dfrac{c}{z} = \dfrac{1}{b}$ according to equation (2)
$
\therefore {\text{ }}2\left[ {\dfrac{b}{y} + \dfrac{1}{b}} \right] = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a} \Rightarrow \dfrac{{2b}}{y} + \dfrac{2}{b} = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a} \Rightarrow \dfrac{{2b}}{y} + \dfrac{1}{b} = \dfrac{1}{c} + \dfrac{1}{a} \\
\Rightarrow \dfrac{{2b}}{y} = \dfrac{1}{c} + \dfrac{1}{a} - \dfrac{1}{b} \Rightarrow \dfrac{{2b}}{y} = \dfrac{{ab + bc - ac}}{{abc}} \Rightarrow \dfrac{y}{{2b}} = \dfrac{{abc}}{{ab + bc - ac}} \\
\Rightarrow y = \dfrac{{2a{b^2}c}}{{ab + bc - ac}} \\
$
Considering equation (4) again, we have
\[ \Rightarrow 2\left[ {\dfrac{a}{x} + \dfrac{b}{y} + \dfrac{c}{z}} \right] = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a}{\text{ }} \Rightarrow 2\left[ {\left( {\dfrac{a}{x} + \dfrac{b}{y}} \right) + \dfrac{c}{z}} \right] = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a}{\text{ }}\]
Since, we have already shown that $\dfrac{a}{x} + \dfrac{b}{y} = \dfrac{1}{c}$ according to equation (1)
$
\therefore {\text{ }}2\left[ {\dfrac{1}{c} + \dfrac{c}{z}} \right] = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a} \Rightarrow \dfrac{2}{c} + \dfrac{{2c}}{z} + = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a} \Rightarrow \dfrac{{2c}}{z} + \dfrac{1}{c} = \dfrac{1}{b} + \dfrac{1}{a} \\
\Rightarrow \dfrac{{2c}}{z} = \dfrac{1}{a} + \dfrac{1}{b} - \dfrac{1}{c} \Rightarrow \dfrac{{2c}}{z} = \dfrac{{bc + ac - ab}}{{abc}} \Rightarrow \dfrac{z}{{2c}} = \dfrac{{abc}}{{bc + ac - ab}} \\
\Rightarrow z = \dfrac{{2ab{c^2}}}{{bc + ac - ab}} \\
$
Therefore, after solving the given equations we get
$x = \dfrac{{2{a^2}bc}}{{ab + ac - bc}}$, $y = \dfrac{{2a{b^2}c}}{{ab + bc - ac}}$ and $z = \dfrac{{2ab{c^2}}}{{bc + ac - ab}}$.
Note- In this particular problem, equations (1), (2) and (3) are used in equation (4) one by one in order to eliminate the other two variables and solve for the remaining one variable only.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Full form of STD, ISD and PCO

Right to vote is a AFundamental Right BFundamental class 8 social science CBSE

Summary of the poem Where the Mind is Without Fear class 8 english CBSE

What are gulf countries and why they are called Gulf class 8 social science CBSE

