
Solve the following equations: $\dfrac{{xy}}{{ay + bx}} = c,\dfrac{{xz}}{{az + cx}} = b,\dfrac{{yz}}{{bz + cy}} = a$.
Answer
594.9k+ views
Hint- Here, we will simplify the given equations in order to evaluate the values of $x$ ,$y$ and $z$.
Given equations are $\dfrac{{xy}}{{ay + bx}} = c,\dfrac{{xz}}{{az + cx}} = b,\dfrac{{yz}}{{bz + cy}} = a$
The above equations can be re-written as
$
\dfrac{{ay + bx}}{{xy}} = \dfrac{1}{c},\dfrac{{az + cx}}{{xz}} = \dfrac{1}{b},\dfrac{{bz + cy}}{{yz}} = \dfrac{1}{a} \Rightarrow \dfrac{{ay}}{{xy}} + \dfrac{{bx}}{{xy}} = \dfrac{1}{c},\dfrac{{az}}{{xz}} + \dfrac{{cx}}{{xz}} = \dfrac{1}{b},\dfrac{{bz}}{{yz}} + \dfrac{{cy}}{{yz}} = \dfrac{1}{a} \\
\Rightarrow \dfrac{a}{x} + \dfrac{b}{y} = \dfrac{1}{c}{\text{ }} \to {\text{(1) }},\dfrac{a}{x} + \dfrac{c}{z} = \dfrac{1}{b}{\text{ }} \to {\text{(2) }},\dfrac{b}{y} + \dfrac{c}{z} = \dfrac{1}{a}{\text{ }} \to {\text{(3)}} \\
\\
$
Now adding all the above three equations, we have
$
\Rightarrow \dfrac{a}{x} + \dfrac{b}{y} + \dfrac{a}{x} + \dfrac{c}{z} + \dfrac{b}{y} + \dfrac{c}{z} = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a} \Rightarrow 2\left[ {\dfrac{a}{x} + \dfrac{b}{y} + \dfrac{c}{z}} \right] = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a}{\text{ }} \to {\text{(4)}} \\
\Rightarrow 2\left[ {\dfrac{a}{x} + \left( {\dfrac{b}{y} + \dfrac{c}{z}} \right)} \right] = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a} \\
$
Since, we have already shown that $\dfrac{b}{y} + \dfrac{c}{z} = \dfrac{1}{a}$ according to equation (3)
$
\therefore {\text{ }}2\left[ {\dfrac{a}{x} + \dfrac{1}{a}} \right] = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a} \Rightarrow \dfrac{{2a}}{x} + \dfrac{2}{a} = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a} \Rightarrow \dfrac{{2a}}{x} + \dfrac{1}{a} = \dfrac{1}{c} + \dfrac{1}{b} \\
\Rightarrow \dfrac{{2a}}{x} = \dfrac{1}{c} + \dfrac{1}{b} - \dfrac{1}{a} \Rightarrow \dfrac{{2a}}{x} = \dfrac{{ab + ac - bc}}{{abc}} \Rightarrow \dfrac{x}{{2a}} = \dfrac{{abc}}{{ab + ac - bc}} \\
\Rightarrow x = \dfrac{{2{a^2}bc}}{{ab + ac - bc}} \\
$
Considering equation (4) again, we have
$ \Rightarrow 2\left[ {\dfrac{a}{x} + \dfrac{b}{y} + \dfrac{c}{z}} \right] = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a}{\text{ }} \Rightarrow 2\left[ {\dfrac{b}{y} + \left( {\dfrac{a}{x} + \dfrac{c}{z}} \right)} \right] = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a}{\text{ }}$
Since, we have already shown that $\dfrac{a}{x} + \dfrac{c}{z} = \dfrac{1}{b}$ according to equation (2)
$
\therefore {\text{ }}2\left[ {\dfrac{b}{y} + \dfrac{1}{b}} \right] = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a} \Rightarrow \dfrac{{2b}}{y} + \dfrac{2}{b} = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a} \Rightarrow \dfrac{{2b}}{y} + \dfrac{1}{b} = \dfrac{1}{c} + \dfrac{1}{a} \\
\Rightarrow \dfrac{{2b}}{y} = \dfrac{1}{c} + \dfrac{1}{a} - \dfrac{1}{b} \Rightarrow \dfrac{{2b}}{y} = \dfrac{{ab + bc - ac}}{{abc}} \Rightarrow \dfrac{y}{{2b}} = \dfrac{{abc}}{{ab + bc - ac}} \\
\Rightarrow y = \dfrac{{2a{b^2}c}}{{ab + bc - ac}} \\
$
Considering equation (4) again, we have
\[ \Rightarrow 2\left[ {\dfrac{a}{x} + \dfrac{b}{y} + \dfrac{c}{z}} \right] = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a}{\text{ }} \Rightarrow 2\left[ {\left( {\dfrac{a}{x} + \dfrac{b}{y}} \right) + \dfrac{c}{z}} \right] = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a}{\text{ }}\]
Since, we have already shown that $\dfrac{a}{x} + \dfrac{b}{y} = \dfrac{1}{c}$ according to equation (1)
$
\therefore {\text{ }}2\left[ {\dfrac{1}{c} + \dfrac{c}{z}} \right] = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a} \Rightarrow \dfrac{2}{c} + \dfrac{{2c}}{z} + = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a} \Rightarrow \dfrac{{2c}}{z} + \dfrac{1}{c} = \dfrac{1}{b} + \dfrac{1}{a} \\
\Rightarrow \dfrac{{2c}}{z} = \dfrac{1}{a} + \dfrac{1}{b} - \dfrac{1}{c} \Rightarrow \dfrac{{2c}}{z} = \dfrac{{bc + ac - ab}}{{abc}} \Rightarrow \dfrac{z}{{2c}} = \dfrac{{abc}}{{bc + ac - ab}} \\
\Rightarrow z = \dfrac{{2ab{c^2}}}{{bc + ac - ab}} \\
$
Therefore, after solving the given equations we get
$x = \dfrac{{2{a^2}bc}}{{ab + ac - bc}}$, $y = \dfrac{{2a{b^2}c}}{{ab + bc - ac}}$ and $z = \dfrac{{2ab{c^2}}}{{bc + ac - ab}}$.
Note- In this particular problem, equations (1), (2) and (3) are used in equation (4) one by one in order to eliminate the other two variables and solve for the remaining one variable only.
Given equations are $\dfrac{{xy}}{{ay + bx}} = c,\dfrac{{xz}}{{az + cx}} = b,\dfrac{{yz}}{{bz + cy}} = a$
The above equations can be re-written as
$
\dfrac{{ay + bx}}{{xy}} = \dfrac{1}{c},\dfrac{{az + cx}}{{xz}} = \dfrac{1}{b},\dfrac{{bz + cy}}{{yz}} = \dfrac{1}{a} \Rightarrow \dfrac{{ay}}{{xy}} + \dfrac{{bx}}{{xy}} = \dfrac{1}{c},\dfrac{{az}}{{xz}} + \dfrac{{cx}}{{xz}} = \dfrac{1}{b},\dfrac{{bz}}{{yz}} + \dfrac{{cy}}{{yz}} = \dfrac{1}{a} \\
\Rightarrow \dfrac{a}{x} + \dfrac{b}{y} = \dfrac{1}{c}{\text{ }} \to {\text{(1) }},\dfrac{a}{x} + \dfrac{c}{z} = \dfrac{1}{b}{\text{ }} \to {\text{(2) }},\dfrac{b}{y} + \dfrac{c}{z} = \dfrac{1}{a}{\text{ }} \to {\text{(3)}} \\
\\
$
Now adding all the above three equations, we have
$
\Rightarrow \dfrac{a}{x} + \dfrac{b}{y} + \dfrac{a}{x} + \dfrac{c}{z} + \dfrac{b}{y} + \dfrac{c}{z} = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a} \Rightarrow 2\left[ {\dfrac{a}{x} + \dfrac{b}{y} + \dfrac{c}{z}} \right] = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a}{\text{ }} \to {\text{(4)}} \\
\Rightarrow 2\left[ {\dfrac{a}{x} + \left( {\dfrac{b}{y} + \dfrac{c}{z}} \right)} \right] = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a} \\
$
Since, we have already shown that $\dfrac{b}{y} + \dfrac{c}{z} = \dfrac{1}{a}$ according to equation (3)
$
\therefore {\text{ }}2\left[ {\dfrac{a}{x} + \dfrac{1}{a}} \right] = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a} \Rightarrow \dfrac{{2a}}{x} + \dfrac{2}{a} = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a} \Rightarrow \dfrac{{2a}}{x} + \dfrac{1}{a} = \dfrac{1}{c} + \dfrac{1}{b} \\
\Rightarrow \dfrac{{2a}}{x} = \dfrac{1}{c} + \dfrac{1}{b} - \dfrac{1}{a} \Rightarrow \dfrac{{2a}}{x} = \dfrac{{ab + ac - bc}}{{abc}} \Rightarrow \dfrac{x}{{2a}} = \dfrac{{abc}}{{ab + ac - bc}} \\
\Rightarrow x = \dfrac{{2{a^2}bc}}{{ab + ac - bc}} \\
$
Considering equation (4) again, we have
$ \Rightarrow 2\left[ {\dfrac{a}{x} + \dfrac{b}{y} + \dfrac{c}{z}} \right] = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a}{\text{ }} \Rightarrow 2\left[ {\dfrac{b}{y} + \left( {\dfrac{a}{x} + \dfrac{c}{z}} \right)} \right] = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a}{\text{ }}$
Since, we have already shown that $\dfrac{a}{x} + \dfrac{c}{z} = \dfrac{1}{b}$ according to equation (2)
$
\therefore {\text{ }}2\left[ {\dfrac{b}{y} + \dfrac{1}{b}} \right] = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a} \Rightarrow \dfrac{{2b}}{y} + \dfrac{2}{b} = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a} \Rightarrow \dfrac{{2b}}{y} + \dfrac{1}{b} = \dfrac{1}{c} + \dfrac{1}{a} \\
\Rightarrow \dfrac{{2b}}{y} = \dfrac{1}{c} + \dfrac{1}{a} - \dfrac{1}{b} \Rightarrow \dfrac{{2b}}{y} = \dfrac{{ab + bc - ac}}{{abc}} \Rightarrow \dfrac{y}{{2b}} = \dfrac{{abc}}{{ab + bc - ac}} \\
\Rightarrow y = \dfrac{{2a{b^2}c}}{{ab + bc - ac}} \\
$
Considering equation (4) again, we have
\[ \Rightarrow 2\left[ {\dfrac{a}{x} + \dfrac{b}{y} + \dfrac{c}{z}} \right] = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a}{\text{ }} \Rightarrow 2\left[ {\left( {\dfrac{a}{x} + \dfrac{b}{y}} \right) + \dfrac{c}{z}} \right] = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a}{\text{ }}\]
Since, we have already shown that $\dfrac{a}{x} + \dfrac{b}{y} = \dfrac{1}{c}$ according to equation (1)
$
\therefore {\text{ }}2\left[ {\dfrac{1}{c} + \dfrac{c}{z}} \right] = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a} \Rightarrow \dfrac{2}{c} + \dfrac{{2c}}{z} + = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a} \Rightarrow \dfrac{{2c}}{z} + \dfrac{1}{c} = \dfrac{1}{b} + \dfrac{1}{a} \\
\Rightarrow \dfrac{{2c}}{z} = \dfrac{1}{a} + \dfrac{1}{b} - \dfrac{1}{c} \Rightarrow \dfrac{{2c}}{z} = \dfrac{{bc + ac - ab}}{{abc}} \Rightarrow \dfrac{z}{{2c}} = \dfrac{{abc}}{{bc + ac - ab}} \\
\Rightarrow z = \dfrac{{2ab{c^2}}}{{bc + ac - ab}} \\
$
Therefore, after solving the given equations we get
$x = \dfrac{{2{a^2}bc}}{{ab + ac - bc}}$, $y = \dfrac{{2a{b^2}c}}{{ab + bc - ac}}$ and $z = \dfrac{{2ab{c^2}}}{{bc + ac - ab}}$.
Note- In this particular problem, equations (1), (2) and (3) are used in equation (4) one by one in order to eliminate the other two variables and solve for the remaining one variable only.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

If overrightarrow a overrightarrow b overrightarrow class 12 maths CBSE

If a b and c are unit coplanar vectors then left 2a class 12 maths CBSE

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

What is 1 divided by 0 class 8 maths CBSE

Advantages and disadvantages of science

Write a letter to your class teacher asking for 2 days class 8 english CBSE

Who commanded the Hector the first British trading class 8 social science CBSE

The past tense of Cut is Cutted A Yes B No class 8 english CBSE

