Solve the following equations: $\dfrac{{xy}}{{ay + bx}} = c,\dfrac{{xz}}{{az + cx}} = b,\dfrac{{yz}}{{bz + cy}} = a$.
Answer
Verified
507.9k+ views
Hint- Here, we will simplify the given equations in order to evaluate the values of $x$ ,$y$ and $z$.
Given equations are $\dfrac{{xy}}{{ay + bx}} = c,\dfrac{{xz}}{{az + cx}} = b,\dfrac{{yz}}{{bz + cy}} = a$
The above equations can be re-written as
$
\dfrac{{ay + bx}}{{xy}} = \dfrac{1}{c},\dfrac{{az + cx}}{{xz}} = \dfrac{1}{b},\dfrac{{bz + cy}}{{yz}} = \dfrac{1}{a} \Rightarrow \dfrac{{ay}}{{xy}} + \dfrac{{bx}}{{xy}} = \dfrac{1}{c},\dfrac{{az}}{{xz}} + \dfrac{{cx}}{{xz}} = \dfrac{1}{b},\dfrac{{bz}}{{yz}} + \dfrac{{cy}}{{yz}} = \dfrac{1}{a} \\
\Rightarrow \dfrac{a}{x} + \dfrac{b}{y} = \dfrac{1}{c}{\text{ }} \to {\text{(1) }},\dfrac{a}{x} + \dfrac{c}{z} = \dfrac{1}{b}{\text{ }} \to {\text{(2) }},\dfrac{b}{y} + \dfrac{c}{z} = \dfrac{1}{a}{\text{ }} \to {\text{(3)}} \\
\\
$
Now adding all the above three equations, we have
$
\Rightarrow \dfrac{a}{x} + \dfrac{b}{y} + \dfrac{a}{x} + \dfrac{c}{z} + \dfrac{b}{y} + \dfrac{c}{z} = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a} \Rightarrow 2\left[ {\dfrac{a}{x} + \dfrac{b}{y} + \dfrac{c}{z}} \right] = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a}{\text{ }} \to {\text{(4)}} \\
\Rightarrow 2\left[ {\dfrac{a}{x} + \left( {\dfrac{b}{y} + \dfrac{c}{z}} \right)} \right] = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a} \\
$
Since, we have already shown that $\dfrac{b}{y} + \dfrac{c}{z} = \dfrac{1}{a}$ according to equation (3)
$
\therefore {\text{ }}2\left[ {\dfrac{a}{x} + \dfrac{1}{a}} \right] = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a} \Rightarrow \dfrac{{2a}}{x} + \dfrac{2}{a} = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a} \Rightarrow \dfrac{{2a}}{x} + \dfrac{1}{a} = \dfrac{1}{c} + \dfrac{1}{b} \\
\Rightarrow \dfrac{{2a}}{x} = \dfrac{1}{c} + \dfrac{1}{b} - \dfrac{1}{a} \Rightarrow \dfrac{{2a}}{x} = \dfrac{{ab + ac - bc}}{{abc}} \Rightarrow \dfrac{x}{{2a}} = \dfrac{{abc}}{{ab + ac - bc}} \\
\Rightarrow x = \dfrac{{2{a^2}bc}}{{ab + ac - bc}} \\
$
Considering equation (4) again, we have
$ \Rightarrow 2\left[ {\dfrac{a}{x} + \dfrac{b}{y} + \dfrac{c}{z}} \right] = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a}{\text{ }} \Rightarrow 2\left[ {\dfrac{b}{y} + \left( {\dfrac{a}{x} + \dfrac{c}{z}} \right)} \right] = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a}{\text{ }}$
Since, we have already shown that $\dfrac{a}{x} + \dfrac{c}{z} = \dfrac{1}{b}$ according to equation (2)
$
\therefore {\text{ }}2\left[ {\dfrac{b}{y} + \dfrac{1}{b}} \right] = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a} \Rightarrow \dfrac{{2b}}{y} + \dfrac{2}{b} = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a} \Rightarrow \dfrac{{2b}}{y} + \dfrac{1}{b} = \dfrac{1}{c} + \dfrac{1}{a} \\
\Rightarrow \dfrac{{2b}}{y} = \dfrac{1}{c} + \dfrac{1}{a} - \dfrac{1}{b} \Rightarrow \dfrac{{2b}}{y} = \dfrac{{ab + bc - ac}}{{abc}} \Rightarrow \dfrac{y}{{2b}} = \dfrac{{abc}}{{ab + bc - ac}} \\
\Rightarrow y = \dfrac{{2a{b^2}c}}{{ab + bc - ac}} \\
$
Considering equation (4) again, we have
\[ \Rightarrow 2\left[ {\dfrac{a}{x} + \dfrac{b}{y} + \dfrac{c}{z}} \right] = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a}{\text{ }} \Rightarrow 2\left[ {\left( {\dfrac{a}{x} + \dfrac{b}{y}} \right) + \dfrac{c}{z}} \right] = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a}{\text{ }}\]
Since, we have already shown that $\dfrac{a}{x} + \dfrac{b}{y} = \dfrac{1}{c}$ according to equation (1)
$
\therefore {\text{ }}2\left[ {\dfrac{1}{c} + \dfrac{c}{z}} \right] = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a} \Rightarrow \dfrac{2}{c} + \dfrac{{2c}}{z} + = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a} \Rightarrow \dfrac{{2c}}{z} + \dfrac{1}{c} = \dfrac{1}{b} + \dfrac{1}{a} \\
\Rightarrow \dfrac{{2c}}{z} = \dfrac{1}{a} + \dfrac{1}{b} - \dfrac{1}{c} \Rightarrow \dfrac{{2c}}{z} = \dfrac{{bc + ac - ab}}{{abc}} \Rightarrow \dfrac{z}{{2c}} = \dfrac{{abc}}{{bc + ac - ab}} \\
\Rightarrow z = \dfrac{{2ab{c^2}}}{{bc + ac - ab}} \\
$
Therefore, after solving the given equations we get
$x = \dfrac{{2{a^2}bc}}{{ab + ac - bc}}$, $y = \dfrac{{2a{b^2}c}}{{ab + bc - ac}}$ and $z = \dfrac{{2ab{c^2}}}{{bc + ac - ab}}$.
Note- In this particular problem, equations (1), (2) and (3) are used in equation (4) one by one in order to eliminate the other two variables and solve for the remaining one variable only.
Given equations are $\dfrac{{xy}}{{ay + bx}} = c,\dfrac{{xz}}{{az + cx}} = b,\dfrac{{yz}}{{bz + cy}} = a$
The above equations can be re-written as
$
\dfrac{{ay + bx}}{{xy}} = \dfrac{1}{c},\dfrac{{az + cx}}{{xz}} = \dfrac{1}{b},\dfrac{{bz + cy}}{{yz}} = \dfrac{1}{a} \Rightarrow \dfrac{{ay}}{{xy}} + \dfrac{{bx}}{{xy}} = \dfrac{1}{c},\dfrac{{az}}{{xz}} + \dfrac{{cx}}{{xz}} = \dfrac{1}{b},\dfrac{{bz}}{{yz}} + \dfrac{{cy}}{{yz}} = \dfrac{1}{a} \\
\Rightarrow \dfrac{a}{x} + \dfrac{b}{y} = \dfrac{1}{c}{\text{ }} \to {\text{(1) }},\dfrac{a}{x} + \dfrac{c}{z} = \dfrac{1}{b}{\text{ }} \to {\text{(2) }},\dfrac{b}{y} + \dfrac{c}{z} = \dfrac{1}{a}{\text{ }} \to {\text{(3)}} \\
\\
$
Now adding all the above three equations, we have
$
\Rightarrow \dfrac{a}{x} + \dfrac{b}{y} + \dfrac{a}{x} + \dfrac{c}{z} + \dfrac{b}{y} + \dfrac{c}{z} = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a} \Rightarrow 2\left[ {\dfrac{a}{x} + \dfrac{b}{y} + \dfrac{c}{z}} \right] = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a}{\text{ }} \to {\text{(4)}} \\
\Rightarrow 2\left[ {\dfrac{a}{x} + \left( {\dfrac{b}{y} + \dfrac{c}{z}} \right)} \right] = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a} \\
$
Since, we have already shown that $\dfrac{b}{y} + \dfrac{c}{z} = \dfrac{1}{a}$ according to equation (3)
$
\therefore {\text{ }}2\left[ {\dfrac{a}{x} + \dfrac{1}{a}} \right] = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a} \Rightarrow \dfrac{{2a}}{x} + \dfrac{2}{a} = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a} \Rightarrow \dfrac{{2a}}{x} + \dfrac{1}{a} = \dfrac{1}{c} + \dfrac{1}{b} \\
\Rightarrow \dfrac{{2a}}{x} = \dfrac{1}{c} + \dfrac{1}{b} - \dfrac{1}{a} \Rightarrow \dfrac{{2a}}{x} = \dfrac{{ab + ac - bc}}{{abc}} \Rightarrow \dfrac{x}{{2a}} = \dfrac{{abc}}{{ab + ac - bc}} \\
\Rightarrow x = \dfrac{{2{a^2}bc}}{{ab + ac - bc}} \\
$
Considering equation (4) again, we have
$ \Rightarrow 2\left[ {\dfrac{a}{x} + \dfrac{b}{y} + \dfrac{c}{z}} \right] = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a}{\text{ }} \Rightarrow 2\left[ {\dfrac{b}{y} + \left( {\dfrac{a}{x} + \dfrac{c}{z}} \right)} \right] = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a}{\text{ }}$
Since, we have already shown that $\dfrac{a}{x} + \dfrac{c}{z} = \dfrac{1}{b}$ according to equation (2)
$
\therefore {\text{ }}2\left[ {\dfrac{b}{y} + \dfrac{1}{b}} \right] = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a} \Rightarrow \dfrac{{2b}}{y} + \dfrac{2}{b} = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a} \Rightarrow \dfrac{{2b}}{y} + \dfrac{1}{b} = \dfrac{1}{c} + \dfrac{1}{a} \\
\Rightarrow \dfrac{{2b}}{y} = \dfrac{1}{c} + \dfrac{1}{a} - \dfrac{1}{b} \Rightarrow \dfrac{{2b}}{y} = \dfrac{{ab + bc - ac}}{{abc}} \Rightarrow \dfrac{y}{{2b}} = \dfrac{{abc}}{{ab + bc - ac}} \\
\Rightarrow y = \dfrac{{2a{b^2}c}}{{ab + bc - ac}} \\
$
Considering equation (4) again, we have
\[ \Rightarrow 2\left[ {\dfrac{a}{x} + \dfrac{b}{y} + \dfrac{c}{z}} \right] = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a}{\text{ }} \Rightarrow 2\left[ {\left( {\dfrac{a}{x} + \dfrac{b}{y}} \right) + \dfrac{c}{z}} \right] = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a}{\text{ }}\]
Since, we have already shown that $\dfrac{a}{x} + \dfrac{b}{y} = \dfrac{1}{c}$ according to equation (1)
$
\therefore {\text{ }}2\left[ {\dfrac{1}{c} + \dfrac{c}{z}} \right] = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a} \Rightarrow \dfrac{2}{c} + \dfrac{{2c}}{z} + = \dfrac{1}{c} + \dfrac{1}{b} + \dfrac{1}{a} \Rightarrow \dfrac{{2c}}{z} + \dfrac{1}{c} = \dfrac{1}{b} + \dfrac{1}{a} \\
\Rightarrow \dfrac{{2c}}{z} = \dfrac{1}{a} + \dfrac{1}{b} - \dfrac{1}{c} \Rightarrow \dfrac{{2c}}{z} = \dfrac{{bc + ac - ab}}{{abc}} \Rightarrow \dfrac{z}{{2c}} = \dfrac{{abc}}{{bc + ac - ab}} \\
\Rightarrow z = \dfrac{{2ab{c^2}}}{{bc + ac - ab}} \\
$
Therefore, after solving the given equations we get
$x = \dfrac{{2{a^2}bc}}{{ab + ac - bc}}$, $y = \dfrac{{2a{b^2}c}}{{ab + bc - ac}}$ and $z = \dfrac{{2ab{c^2}}}{{bc + ac - ab}}$.
Note- In this particular problem, equations (1), (2) and (3) are used in equation (4) one by one in order to eliminate the other two variables and solve for the remaining one variable only.
Recently Updated Pages
Identify how many lines of symmetry drawn are there class 8 maths CBSE
State true or false If two lines intersect and if one class 8 maths CBSE
Tina had 20m 5cm long cloth She cuts 4m 50cm lengt-class-8-maths-CBSE
Which sentence is punctuated correctly A Always ask class 8 english CBSE
Will Mr Black be at home Saturday evening Yes hell class 8 english CBSE
An electrician sells a room heater for Rs 3220 gaining class 8 maths CBSE
Trending doubts
How is the Lok Sabha more powerful than the Rajya class 8 social science CBSE
Write a letter to your friend telling himher how you class 8 english CBSE
Write the following in HinduArabic numerals XXIX class 8 maths CBSE
Differentiate between the farms in India and the U class 8 social science CBSE
The strategy of Divide and rule was adopted by A Lord class 8 social science CBSE
When will we use have had and had had in the sente class 8 english CBSE