
Solve the following equations:
\[2xy-4x+y=17,3yz+y-6z=52,6xz+3z+2x=29\]
Answer
597.6k+ views
Hint: We have the equations, \[2xy-4x+y=17,3yz+y-6z=52\] , and \[6xz+3z+2x=29\] .
Add -2 in LHS and RHS of the equation \[\left( 2xy-4x+y=17 \right)\] and then factorize it. Similarly, add -2 in LHS and RHS of the equation \[\left( 3yz+y-6z=52 \right)\] and then factorize it. Now, add 1 in LHS and RHS of the equation \[\left( 6xz+3z+2x=29 \right)\] and then factorize it. Now, multiply the factors of the equations \[2xy-4x+y=17,3yz+y-6z=52\] , and \[6xz+3z+2x=29\] , and then simplify it. After simplifying, use the factors of the equation \[\left( 2xy-4x+y=17 \right)\] and get the value of z. Similarly, solve it further and get the values of x and y.
Complete step-by-step answer:
According to the question, we have three equations which are,
\[2xy-4x+y=17\] ……………………(1)
\[3yz+y-6z=52\] ………………………(2)
\[6xz+3z+2x=29\] …………………….(3)
Now, simplifying equation (1), we get
\[\begin{align}
& 2xy-4x+y=17 \\
& \Rightarrow 2x\left( y-2 \right)+y=17 \\
\end{align}\]
Adding -2 in LHS and RHS of the above equation,
\[\begin{align}
& \Rightarrow 2x\left( y-2 \right)+y-2=17-2 \\
& \Rightarrow 2x\left( y-2 \right)+1\left( y-2 \right)=17-2 \\
\end{align}\]
Taking \[\left( y-2 \right)\] as common, we get
\[\Rightarrow 2x\left( y-2 \right)+1\left( y-2 \right)=17-2\]
\[\Rightarrow \left( 2x+1 \right)\left( y-2 \right)=15\] …………………………(4)
Now, simplifying equation (2), we get
\[\begin{align}
& 3yz+y-6z=52 \\
& \Rightarrow 3z\left( y-2 \right)+y=52 \\
\end{align}\]
Adding -2 in LHS and RHS of the above equation,
\[\begin{align}
& \Rightarrow 3z\left( y-2 \right)+y-2=52-2 \\
& \Rightarrow 3z\left( y-2 \right)+1\left( y-2 \right)=50 \\
\end{align}\]
Taking \[\left( y-2 \right)\] as common, we get
\[\Rightarrow 3z\left( y-2 \right)+1\left( y-2 \right)=50\]
\[\Rightarrow \left( 3z+1 \right)\left( y-2 \right)=50\] ……………………….(5)
Now, simplifying equation (3), we get
\[\begin{align}
& 6xz+3z+2x=29 \\
& \Rightarrow 3z\left( 2x+1 \right)+2x=29 \\
\end{align}\]
Adding 1 in LHS and RHS of the above equation,
\[\begin{align}
& \Rightarrow 3z\left( 2x+1 \right)+2x+1=29+1 \\
& \Rightarrow 3z\left( 2x+1 \right)+1\left( 2x+1 \right)=30 \\
\end{align}\]
Taking \[\left( 2x+1 \right)\] as common, we get
\[\Rightarrow 3z\left( 2x+1 \right)+1\left( 2x+1 \right)=30\]
\[\Rightarrow \left( 3z+1 \right)\left( 2x+1 \right)=30\] ……………………..(6)
Now, multiplying equation (4), equation (5), and equation (6), we get
\[\begin{align}
& \Rightarrow \left( 2x+1 \right)\left( y-2 \right)\times \left( 3z+1 \right)\left( y-2 \right)\times \left( 3z+1 \right)\left( 2x+1 \right)=50\times 15\times 30 \\
& \Rightarrow {{\left( 2x+1 \right)}^{2}}{{\left( y-2 \right)}^{2}}{{\left( 3z+1 \right)}^{2}}=50\times 15\times 30 \\
\end{align}\]
Taking square root in LHS and RHS of the above equation,
\[\begin{align}
& \Rightarrow {{\left( 2x+1 \right)}^{2}}{{\left( y-2 \right)}^{2}}{{\left( 3z+1 \right)}^{2}}=50\times 15\times 30 \\
& \Rightarrow \left( 2x+1 \right)\left( y-2 \right)\left( 3z+1 \right)=\sqrt{50\times 15\times 30} \\
& \Rightarrow \left( 2x+1 \right)\left( y-2 \right)\left( 3z+1 \right)=\sqrt{50\times 15\times 15\times 2} \\
& \Rightarrow \left( 2x+1 \right)\left( y-2 \right)\left( 3z+1 \right)=\sqrt{{{\left( 10 \right)}^{2}}{{\left( 15 \right)}^{2}}} \\
\end{align}\]
\[\Rightarrow \left( 2x+1 \right)\left( y-2 \right)\left( 3z+1 \right)=\pm 150\] ………………………(7)
From equation (4), we have \[\left( 2x+1 \right)\left( y-2 \right)=15\] .
Now, from equation (4) and equation (7), we have
\[\begin{align}
& \left( 2x+1 \right)\left( y-2 \right)\left( 3z+1 \right)=\pm 150 \\
& \Rightarrow 15\left( 3z+1 \right)=\pm 150 \\
& \Rightarrow \left( 3z+1 \right)=\dfrac{\pm 150}{15} \\
& \Rightarrow \left( 3z+1 \right)=\pm 10 \\
\end{align}\]
So, \[\left( 3z+1 \right)=10\] and \[\left( 3z+1 \right)=-10\] .
Taking \[\left( 3z+1 \right)=10\] and solving it we get,
\[\begin{align}
& \left( 3z+1 \right)=10 \\
& \Rightarrow 3z=10-1 \\
& \Rightarrow 3z=9 \\
\end{align}\]
\[\Rightarrow z=3\] …………….(8)
Taking \[\left( 3z+1 \right)=-10\] and solving it we get,
\[\begin{align}
& \left( 3z+1 \right)=-10 \\
& \Rightarrow 3z=-10-1 \\
& \Rightarrow 3z=-11 \\
\end{align}\]
\[\Rightarrow z=\dfrac{-11}{3}\] ………………..(9)
Now, from equation (5) and equation (7), we have
\[\begin{align}
& \left( 2x+1 \right)\left( y-2 \right)\left( 3z+1 \right)=\pm 150 \\
& \Rightarrow \left( 2x+1 \right)50=\pm 150 \\
& \Rightarrow \left( 2x+1 \right)=\dfrac{\pm 150}{50} \\
& \Rightarrow \left( 2x+1 \right)=\pm 3 \\
\end{align}\]
So, \[\left( 2x+1 \right)=3\] and \[\left( 2x+1 \right)=-3\] .
Taking \[\left( 2x+1 \right)=3\] and solving it we get,
\[\begin{align}
& \left( 2x+1 \right)=3 \\
& \Rightarrow 2x=3-1 \\
& \Rightarrow 2x=2 \\
\end{align}\]
\[\Rightarrow x=1\] …………….(10)
Taking \[\left( 2x+1 \right)=-3\] and solving it we get,
\[\begin{align}
& \left( 2x+1 \right)=-3 \\
& \Rightarrow 2x=-3-1 \\
& \Rightarrow 2x=-4 \\
\end{align}\]
\[\Rightarrow x=-2\] ………………..(11)
Now, from equation (6) and equation (7), we have
\[\begin{align}
& \left( 2x+1 \right)\left( y-2 \right)\left( 3z+1 \right)=\pm 150 \\
& \Rightarrow \left( y-2 \right)30=\pm 150 \\
& \Rightarrow \left( y-2 \right)=\dfrac{\pm 150}{30} \\
& \Rightarrow \left( y-2 \right)=\pm 5 \\
\end{align}\]
So, \[\left( y-2 \right)=5\] and \[\left( y-2 \right)=-5\] .
Taking \[\left( y-2 \right)=5\] and solving it we get,
\[\begin{align}
& \left( y-2 \right)=5 \\
& \Rightarrow y-2=5 \\
& \Rightarrow y=5+2 \\
\end{align}\]
\[\Rightarrow y=7\] …………….(12)
Taking \[\left( y-2 \right)=-5\] and solving it we get,
\[\begin{align}
& \left( y-2 \right)=5 \\
& \Rightarrow y-2=-5-1 \\
& \Rightarrow y=-5+2 \\
\end{align}\]
\[\Rightarrow y=-3\] ………………..(13)
Hence, the solution sets are \[x=1,y=7,z=3\text{ or }x=-2,y=-3,z=\dfrac{-11}{3}\] .
Note: In this question, one might think to get the value of y from equation (2) and put it in equation (3). Now, we have two equations in the variables x and y and two equations. One can think to get the value of x from one equation and substitute the value of x in other equations.
Add -2 in LHS and RHS of the equation \[\left( 2xy-4x+y=17 \right)\] and then factorize it. Similarly, add -2 in LHS and RHS of the equation \[\left( 3yz+y-6z=52 \right)\] and then factorize it. Now, add 1 in LHS and RHS of the equation \[\left( 6xz+3z+2x=29 \right)\] and then factorize it. Now, multiply the factors of the equations \[2xy-4x+y=17,3yz+y-6z=52\] , and \[6xz+3z+2x=29\] , and then simplify it. After simplifying, use the factors of the equation \[\left( 2xy-4x+y=17 \right)\] and get the value of z. Similarly, solve it further and get the values of x and y.
Complete step-by-step answer:
According to the question, we have three equations which are,
\[2xy-4x+y=17\] ……………………(1)
\[3yz+y-6z=52\] ………………………(2)
\[6xz+3z+2x=29\] …………………….(3)
Now, simplifying equation (1), we get
\[\begin{align}
& 2xy-4x+y=17 \\
& \Rightarrow 2x\left( y-2 \right)+y=17 \\
\end{align}\]
Adding -2 in LHS and RHS of the above equation,
\[\begin{align}
& \Rightarrow 2x\left( y-2 \right)+y-2=17-2 \\
& \Rightarrow 2x\left( y-2 \right)+1\left( y-2 \right)=17-2 \\
\end{align}\]
Taking \[\left( y-2 \right)\] as common, we get
\[\Rightarrow 2x\left( y-2 \right)+1\left( y-2 \right)=17-2\]
\[\Rightarrow \left( 2x+1 \right)\left( y-2 \right)=15\] …………………………(4)
Now, simplifying equation (2), we get
\[\begin{align}
& 3yz+y-6z=52 \\
& \Rightarrow 3z\left( y-2 \right)+y=52 \\
\end{align}\]
Adding -2 in LHS and RHS of the above equation,
\[\begin{align}
& \Rightarrow 3z\left( y-2 \right)+y-2=52-2 \\
& \Rightarrow 3z\left( y-2 \right)+1\left( y-2 \right)=50 \\
\end{align}\]
Taking \[\left( y-2 \right)\] as common, we get
\[\Rightarrow 3z\left( y-2 \right)+1\left( y-2 \right)=50\]
\[\Rightarrow \left( 3z+1 \right)\left( y-2 \right)=50\] ……………………….(5)
Now, simplifying equation (3), we get
\[\begin{align}
& 6xz+3z+2x=29 \\
& \Rightarrow 3z\left( 2x+1 \right)+2x=29 \\
\end{align}\]
Adding 1 in LHS and RHS of the above equation,
\[\begin{align}
& \Rightarrow 3z\left( 2x+1 \right)+2x+1=29+1 \\
& \Rightarrow 3z\left( 2x+1 \right)+1\left( 2x+1 \right)=30 \\
\end{align}\]
Taking \[\left( 2x+1 \right)\] as common, we get
\[\Rightarrow 3z\left( 2x+1 \right)+1\left( 2x+1 \right)=30\]
\[\Rightarrow \left( 3z+1 \right)\left( 2x+1 \right)=30\] ……………………..(6)
Now, multiplying equation (4), equation (5), and equation (6), we get
\[\begin{align}
& \Rightarrow \left( 2x+1 \right)\left( y-2 \right)\times \left( 3z+1 \right)\left( y-2 \right)\times \left( 3z+1 \right)\left( 2x+1 \right)=50\times 15\times 30 \\
& \Rightarrow {{\left( 2x+1 \right)}^{2}}{{\left( y-2 \right)}^{2}}{{\left( 3z+1 \right)}^{2}}=50\times 15\times 30 \\
\end{align}\]
Taking square root in LHS and RHS of the above equation,
\[\begin{align}
& \Rightarrow {{\left( 2x+1 \right)}^{2}}{{\left( y-2 \right)}^{2}}{{\left( 3z+1 \right)}^{2}}=50\times 15\times 30 \\
& \Rightarrow \left( 2x+1 \right)\left( y-2 \right)\left( 3z+1 \right)=\sqrt{50\times 15\times 30} \\
& \Rightarrow \left( 2x+1 \right)\left( y-2 \right)\left( 3z+1 \right)=\sqrt{50\times 15\times 15\times 2} \\
& \Rightarrow \left( 2x+1 \right)\left( y-2 \right)\left( 3z+1 \right)=\sqrt{{{\left( 10 \right)}^{2}}{{\left( 15 \right)}^{2}}} \\
\end{align}\]
\[\Rightarrow \left( 2x+1 \right)\left( y-2 \right)\left( 3z+1 \right)=\pm 150\] ………………………(7)
From equation (4), we have \[\left( 2x+1 \right)\left( y-2 \right)=15\] .
Now, from equation (4) and equation (7), we have
\[\begin{align}
& \left( 2x+1 \right)\left( y-2 \right)\left( 3z+1 \right)=\pm 150 \\
& \Rightarrow 15\left( 3z+1 \right)=\pm 150 \\
& \Rightarrow \left( 3z+1 \right)=\dfrac{\pm 150}{15} \\
& \Rightarrow \left( 3z+1 \right)=\pm 10 \\
\end{align}\]
So, \[\left( 3z+1 \right)=10\] and \[\left( 3z+1 \right)=-10\] .
Taking \[\left( 3z+1 \right)=10\] and solving it we get,
\[\begin{align}
& \left( 3z+1 \right)=10 \\
& \Rightarrow 3z=10-1 \\
& \Rightarrow 3z=9 \\
\end{align}\]
\[\Rightarrow z=3\] …………….(8)
Taking \[\left( 3z+1 \right)=-10\] and solving it we get,
\[\begin{align}
& \left( 3z+1 \right)=-10 \\
& \Rightarrow 3z=-10-1 \\
& \Rightarrow 3z=-11 \\
\end{align}\]
\[\Rightarrow z=\dfrac{-11}{3}\] ………………..(9)
Now, from equation (5) and equation (7), we have
\[\begin{align}
& \left( 2x+1 \right)\left( y-2 \right)\left( 3z+1 \right)=\pm 150 \\
& \Rightarrow \left( 2x+1 \right)50=\pm 150 \\
& \Rightarrow \left( 2x+1 \right)=\dfrac{\pm 150}{50} \\
& \Rightarrow \left( 2x+1 \right)=\pm 3 \\
\end{align}\]
So, \[\left( 2x+1 \right)=3\] and \[\left( 2x+1 \right)=-3\] .
Taking \[\left( 2x+1 \right)=3\] and solving it we get,
\[\begin{align}
& \left( 2x+1 \right)=3 \\
& \Rightarrow 2x=3-1 \\
& \Rightarrow 2x=2 \\
\end{align}\]
\[\Rightarrow x=1\] …………….(10)
Taking \[\left( 2x+1 \right)=-3\] and solving it we get,
\[\begin{align}
& \left( 2x+1 \right)=-3 \\
& \Rightarrow 2x=-3-1 \\
& \Rightarrow 2x=-4 \\
\end{align}\]
\[\Rightarrow x=-2\] ………………..(11)
Now, from equation (6) and equation (7), we have
\[\begin{align}
& \left( 2x+1 \right)\left( y-2 \right)\left( 3z+1 \right)=\pm 150 \\
& \Rightarrow \left( y-2 \right)30=\pm 150 \\
& \Rightarrow \left( y-2 \right)=\dfrac{\pm 150}{30} \\
& \Rightarrow \left( y-2 \right)=\pm 5 \\
\end{align}\]
So, \[\left( y-2 \right)=5\] and \[\left( y-2 \right)=-5\] .
Taking \[\left( y-2 \right)=5\] and solving it we get,
\[\begin{align}
& \left( y-2 \right)=5 \\
& \Rightarrow y-2=5 \\
& \Rightarrow y=5+2 \\
\end{align}\]
\[\Rightarrow y=7\] …………….(12)
Taking \[\left( y-2 \right)=-5\] and solving it we get,
\[\begin{align}
& \left( y-2 \right)=5 \\
& \Rightarrow y-2=-5-1 \\
& \Rightarrow y=-5+2 \\
\end{align}\]
\[\Rightarrow y=-3\] ………………..(13)
Hence, the solution sets are \[x=1,y=7,z=3\text{ or }x=-2,y=-3,z=\dfrac{-11}{3}\] .
Note: In this question, one might think to get the value of y from equation (2) and put it in equation (3). Now, we have two equations in the variables x and y and two equations. One can think to get the value of x from one equation and substitute the value of x in other equations.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

Who gave "Inqilab Zindabad" slogan?

Who was Subhash Chandra Bose Why was he called Net class 10 english CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

