
How do you solve the following equation $ {\left[ {\sin \left( {2x} \right) + \cos \left( {2x} \right)} \right]^2} = 1 $ in the interval $ [0,2\pi ] $ ?
Answer
531.6k+ views
Hint: The given trigonometric equation can be simplified using the trigonometric identities to get the equation that has only one trigonometric function. After, simplification uses the general solution of a trigonometric equation of the function and get all the solutions.
Formula used:
We have the general solution of the equation as $ \sin x = \sin y $ is given by $ x = n\pi + {( - 1)^n}y $ , where $ n \in \mathbb{Z} $ .
Complete step-by-step answer:
The given equation is $ {\left[ {\sin \left( {2x} \right) + \cos \left( {2x} \right)} \right]^2} = 1 $ - - - - - - - - - - - - - - - - - (1)
Now, we will use the algebraic identity $ {\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2} $ to simplify the given equation as $ {\sin ^2}\left( {2x} \right) + 2\sin \left( {2x} \right)\cos \left( {2x} \right) + {\cos ^2}\left( {2x} \right) = 1 $ .
Rearranging the terms, we get, (1) as $ {\sin ^2}\left( {2x} \right) + {\cos ^2}\left( {2x} \right) + 2\sin \left( {2x} \right)\cos \left( {2x} \right) = 1 $ .
$ \Rightarrow 1 + 2\sin \left( {2x} \right)\cos \left( {2x} \right) = 1 $
[Using the identity $ {\sin ^2}\theta + {\cos ^2}\theta = 1 $ ]
$ \Rightarrow 2\sin \left( {2x} \right)\cos \left( {2x} \right) = 1 - 1 = 0 $
$ \Rightarrow \sin \left( {4x} \right) = 0 $
[Using the identity $ \sin 2\theta = 2\sin \theta \cos \theta $ ]
$ \Rightarrow \sin \left( {4x} \right) = \sin \left( 0 \right) $
[Since, $ \sin \left( 0 \right) = 0 $ ]
Now, we will use the general solution of the trigonometric equation $ \sin x = \sin y $ is given by $ x = n\pi + {( - 1)^n}y $ , where $ n \in \mathbb{Z} $ .
$ \Rightarrow 4x = n\pi + {( - 1)^n}\left( 0 \right),{\text{ }}n \in \mathbb{Z} $
$ \Rightarrow x = \dfrac{{n\pi }}{4},{\text{ }}n \in \mathbb{Z} $ , is the general solution of (1).
$ \Rightarrow x = 0,\dfrac{\pi }{4},\dfrac{\pi }{2},\dfrac{{3\pi }}{4},\pi ,\dfrac{{5\pi }}{4},\dfrac{{3\pi }}{2},\dfrac{{7\pi }}{4},2\pi ,... $ for $ n = 0,1,2,3,4,5,6,7,8,... $
But to find the solutions in the given interval which is positive, we will look at the solutions generated by the non-negative integers.
So, the solutions for the given equation (1) in the interval $ [0,2\pi ] $ are $ 0,\dfrac{\pi }{4},\dfrac{\pi }{2},\dfrac{{3\pi }}{4},\pi ,\dfrac{{5\pi }}{4},\dfrac{{3\pi }}{2},\dfrac{{7\pi }}{4}{\text{ and }}2\pi $ .
So, the correct answer is “ $ 0,\dfrac{\pi }{4},\dfrac{\pi }{2},\dfrac{{3\pi }}{4},\pi ,\dfrac{{5\pi }}{4},\dfrac{{3\pi }}{2},\dfrac{{7\pi }}{4}{\text{ and }}2\pi $ .”.
Note: Other important general solutions to solve the trigonometric equations are,
\[\tan x = \tan y \Rightarrow x = n\pi + y,{\text{ where }}n \in \mathbb{Z}\]
\[\cos x = \cos y \Rightarrow x = 2n\pi \pm y,{\text{ where }}n \in \mathbb{Z}\]
It is important to know all the trigonometric formulas and identities beforehand to simplify the trigonometric equation. So, that we can use the three known general solutions. It is very important to keep the interval in mind while solving the equation. Because that itself would make the steps simpler and can help in choosing the required solution.
Formula used:
We have the general solution of the equation as $ \sin x = \sin y $ is given by $ x = n\pi + {( - 1)^n}y $ , where $ n \in \mathbb{Z} $ .
Complete step-by-step answer:
The given equation is $ {\left[ {\sin \left( {2x} \right) + \cos \left( {2x} \right)} \right]^2} = 1 $ - - - - - - - - - - - - - - - - - (1)
Now, we will use the algebraic identity $ {\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2} $ to simplify the given equation as $ {\sin ^2}\left( {2x} \right) + 2\sin \left( {2x} \right)\cos \left( {2x} \right) + {\cos ^2}\left( {2x} \right) = 1 $ .
Rearranging the terms, we get, (1) as $ {\sin ^2}\left( {2x} \right) + {\cos ^2}\left( {2x} \right) + 2\sin \left( {2x} \right)\cos \left( {2x} \right) = 1 $ .
$ \Rightarrow 1 + 2\sin \left( {2x} \right)\cos \left( {2x} \right) = 1 $
[Using the identity $ {\sin ^2}\theta + {\cos ^2}\theta = 1 $ ]
$ \Rightarrow 2\sin \left( {2x} \right)\cos \left( {2x} \right) = 1 - 1 = 0 $
$ \Rightarrow \sin \left( {4x} \right) = 0 $
[Using the identity $ \sin 2\theta = 2\sin \theta \cos \theta $ ]
$ \Rightarrow \sin \left( {4x} \right) = \sin \left( 0 \right) $
[Since, $ \sin \left( 0 \right) = 0 $ ]
Now, we will use the general solution of the trigonometric equation $ \sin x = \sin y $ is given by $ x = n\pi + {( - 1)^n}y $ , where $ n \in \mathbb{Z} $ .
$ \Rightarrow 4x = n\pi + {( - 1)^n}\left( 0 \right),{\text{ }}n \in \mathbb{Z} $
$ \Rightarrow x = \dfrac{{n\pi }}{4},{\text{ }}n \in \mathbb{Z} $ , is the general solution of (1).
$ \Rightarrow x = 0,\dfrac{\pi }{4},\dfrac{\pi }{2},\dfrac{{3\pi }}{4},\pi ,\dfrac{{5\pi }}{4},\dfrac{{3\pi }}{2},\dfrac{{7\pi }}{4},2\pi ,... $ for $ n = 0,1,2,3,4,5,6,7,8,... $
But to find the solutions in the given interval which is positive, we will look at the solutions generated by the non-negative integers.
So, the solutions for the given equation (1) in the interval $ [0,2\pi ] $ are $ 0,\dfrac{\pi }{4},\dfrac{\pi }{2},\dfrac{{3\pi }}{4},\pi ,\dfrac{{5\pi }}{4},\dfrac{{3\pi }}{2},\dfrac{{7\pi }}{4}{\text{ and }}2\pi $ .
So, the correct answer is “ $ 0,\dfrac{\pi }{4},\dfrac{\pi }{2},\dfrac{{3\pi }}{4},\pi ,\dfrac{{5\pi }}{4},\dfrac{{3\pi }}{2},\dfrac{{7\pi }}{4}{\text{ and }}2\pi $ .”.
Note: Other important general solutions to solve the trigonometric equations are,
\[\tan x = \tan y \Rightarrow x = n\pi + y,{\text{ where }}n \in \mathbb{Z}\]
\[\cos x = \cos y \Rightarrow x = 2n\pi \pm y,{\text{ where }}n \in \mathbb{Z}\]
It is important to know all the trigonometric formulas and identities beforehand to simplify the trigonometric equation. So, that we can use the three known general solutions. It is very important to keep the interval in mind while solving the equation. Because that itself would make the steps simpler and can help in choosing the required solution.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

