
Solve the following equation: $ \dfrac{{3x}}{{x + 6}} - \dfrac{x}{{x + 5}} = 2 $
Answer
522.9k+ views
Hint: In order to solve the equation, first solve the left side equation by multiplying the denominators with the alternate numerators, so that we get the common denominator. As we know that if the equations have different denominators which do not have any common factors, then simply multiply the denominator with an alternate numerator. Then simplify the obtained numerator by adding or subtracting to find the value of $ x $ .
Complete step-by-step answer:
We are given with the equation $ \dfrac{{3x}}{{x + 6}} - \dfrac{x}{{x + 5}} = 2 $ .
Multiplying the denominator $ x + 5 $ to the numerator and denominator of the first operand and multiplying the denominator $ x + 6 $ to the numerator and denominator of the second operand, and we get:
$
\dfrac{{3x}}{{x + 6}} \times \dfrac{{x + 5}}{{x + 5}} - \dfrac{x}{{x + 5}} \times \dfrac{{x + 6}}{{x + 6}} = 2 \\
\Rightarrow \dfrac{{3x\left( {x + 5} \right)}}{{\left( {x + 6} \right)\left( {x + 5} \right)}} - \dfrac{{x\left( {x + 6} \right)}}{{\left( {x + 6} \right)\left( {x + 5} \right)}} = 2 \;
$
And, we got the common denominator.
Since, there is common denominator on both the operands so, we are taking it as one operand and we get:
$ \dfrac{{3x\left( {x + 5} \right) - x\left( {x + 6} \right)}}{{\left( {x + 6} \right)\left( {x + 5} \right)}} = 2 $
Multiplying both sides by $ \left( {x + 6} \right)\left( {x + 5} \right) $ in order to eliminate the denominator on the left side:
$
\dfrac{{\left( {3x\left( {x + 5} \right) - x\left( {x + 6} \right)} \right)}}{{\left( {x + 6} \right)\left( {x + 5} \right)}} \times \left( {x + 6} \right)\left( {x + 5} \right) = 2\left( {x + 6} \right)\left( {x + 5} \right) \\
\Rightarrow 3x\left( {x + 5} \right) - x\left( {x + 6} \right) = 2\left( {x + 6} \right)\left( {x + 5} \right) \;
$
Opening the parenthesis of the both the sides and on further solving, we get:
$
3x\left( {x + 5} \right) - x\left( {x + 6} \right) = 2\left( {x + 6} \right)\left( {x + 5} \right) \\
\Rightarrow 3{x^2} + 15x - \left( {{x^2} + 6x} \right) = 2\left( {{x^2} + 6x + 5x + 30} \right) \\
\Rightarrow 3{x^2} + 15x - {x^2} - 6x = 2\left( {{x^2} + 11x + 30} \right) \\
\Rightarrow 3{x^2} + 15x - {x^2} - 6x = 2{x^2} + 22x + 60 \\
\Rightarrow 2{x^2} + 9x = 2{x^2} + 22x + 60 \;
$
For further simplifying, subtracting both the sides by $ 2{x^2} $ and $ 22x $ :
$
\Rightarrow 2{x^2} + 9x = 2{x^2} + 22x + 60 \\
\Rightarrow 2{x^2} + 9x - 2{x^2} - 22x = 2{x^2} - 2{x^2} + 22x - 22x + 60 \\
\Rightarrow - 13x = 60 \;
$
Dividing both the sides by $ - 13 $ , in order to cancel out the constant from the left-hand side, so that we are left with only the variable $ x $ , and on dividing we get:
$
- 13x = 60 \\
\Rightarrow \dfrac{{ - 13x}}{{ - 13}} = \dfrac{{60}}{{ - 13}} \\
\Rightarrow x = \dfrac{{ - 60}}{{13}} \;
$
Therefore, after solving the equation $ \dfrac{{3x}}{{x + 6}} - \dfrac{x}{{x + 5}} = 2 $ , we get $ x = \dfrac{{ - 60}}{{13}} $ .
So, the correct answer is “ $ \dfrac{{ - 60}}{{13}} $ ”.
Note: Since, the numerator is greater than the denominator so we can also convert it into the mixed fraction, like $ x = \dfrac{{ - 60}}{{13}} = - 4\dfrac{8}{{13}} $ .
Always preferred to go step by step rather than trying to solve the equation at once, otherwise it leads to error sometimes.
Complete step-by-step answer:
We are given with the equation $ \dfrac{{3x}}{{x + 6}} - \dfrac{x}{{x + 5}} = 2 $ .
Multiplying the denominator $ x + 5 $ to the numerator and denominator of the first operand and multiplying the denominator $ x + 6 $ to the numerator and denominator of the second operand, and we get:
$
\dfrac{{3x}}{{x + 6}} \times \dfrac{{x + 5}}{{x + 5}} - \dfrac{x}{{x + 5}} \times \dfrac{{x + 6}}{{x + 6}} = 2 \\
\Rightarrow \dfrac{{3x\left( {x + 5} \right)}}{{\left( {x + 6} \right)\left( {x + 5} \right)}} - \dfrac{{x\left( {x + 6} \right)}}{{\left( {x + 6} \right)\left( {x + 5} \right)}} = 2 \;
$
And, we got the common denominator.
Since, there is common denominator on both the operands so, we are taking it as one operand and we get:
$ \dfrac{{3x\left( {x + 5} \right) - x\left( {x + 6} \right)}}{{\left( {x + 6} \right)\left( {x + 5} \right)}} = 2 $
Multiplying both sides by $ \left( {x + 6} \right)\left( {x + 5} \right) $ in order to eliminate the denominator on the left side:
$
\dfrac{{\left( {3x\left( {x + 5} \right) - x\left( {x + 6} \right)} \right)}}{{\left( {x + 6} \right)\left( {x + 5} \right)}} \times \left( {x + 6} \right)\left( {x + 5} \right) = 2\left( {x + 6} \right)\left( {x + 5} \right) \\
\Rightarrow 3x\left( {x + 5} \right) - x\left( {x + 6} \right) = 2\left( {x + 6} \right)\left( {x + 5} \right) \;
$
Opening the parenthesis of the both the sides and on further solving, we get:
$
3x\left( {x + 5} \right) - x\left( {x + 6} \right) = 2\left( {x + 6} \right)\left( {x + 5} \right) \\
\Rightarrow 3{x^2} + 15x - \left( {{x^2} + 6x} \right) = 2\left( {{x^2} + 6x + 5x + 30} \right) \\
\Rightarrow 3{x^2} + 15x - {x^2} - 6x = 2\left( {{x^2} + 11x + 30} \right) \\
\Rightarrow 3{x^2} + 15x - {x^2} - 6x = 2{x^2} + 22x + 60 \\
\Rightarrow 2{x^2} + 9x = 2{x^2} + 22x + 60 \;
$
For further simplifying, subtracting both the sides by $ 2{x^2} $ and $ 22x $ :
$
\Rightarrow 2{x^2} + 9x = 2{x^2} + 22x + 60 \\
\Rightarrow 2{x^2} + 9x - 2{x^2} - 22x = 2{x^2} - 2{x^2} + 22x - 22x + 60 \\
\Rightarrow - 13x = 60 \;
$
Dividing both the sides by $ - 13 $ , in order to cancel out the constant from the left-hand side, so that we are left with only the variable $ x $ , and on dividing we get:
$
- 13x = 60 \\
\Rightarrow \dfrac{{ - 13x}}{{ - 13}} = \dfrac{{60}}{{ - 13}} \\
\Rightarrow x = \dfrac{{ - 60}}{{13}} \;
$
Therefore, after solving the equation $ \dfrac{{3x}}{{x + 6}} - \dfrac{x}{{x + 5}} = 2 $ , we get $ x = \dfrac{{ - 60}}{{13}} $ .
So, the correct answer is “ $ \dfrac{{ - 60}}{{13}} $ ”.
Note: Since, the numerator is greater than the denominator so we can also convert it into the mixed fraction, like $ x = \dfrac{{ - 60}}{{13}} = - 4\dfrac{8}{{13}} $ .
Always preferred to go step by step rather than trying to solve the equation at once, otherwise it leads to error sometimes.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

What are the 12 elements of nature class 8 chemistry CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Full form of STD, ISD and PCO

Convert 40circ C to Fahrenheit A 104circ F B 107circ class 8 maths CBSE

Advantages and disadvantages of science


