
Solve the following equation :$\dfrac{{3{x^4} + {x^2} - 2x - 3}}{{3{x^4} - {x^2} + 2x + 3}} = \dfrac{{5{x^4} + 2{x^2} - 7x + 3}}{{5{x^4} - 2{x^2} + 7x - 3}}$.
Answer
617.7k+ views
Hint: Here, we go through by rearranging the equation so that we eliminate it easily and factorise the final equation to find the value of x.
Complete step-by-step answer:
We will rewrite question as
$\dfrac{{3{x^4} + 3{x^4} - 3{x^4} + {x^2} - 2x - 3}}{{3{x^4} - {x^2} + 2x + 3}} = \dfrac{{5{x^4} + 5{x^4} - 5{x^4} + 2{x^2} - 7x + 3}}{{5{x^4} - 2{x^2} + 7x - 3}}$
$ \Rightarrow \dfrac{{3{x^4} + 3{x^4}}}{{3{x^4} - {x^2} + 2x + 3}} - \dfrac{{3{x^4} - {x^2} + 2x + 3}}{{3{x^4} - {x^2} + 2x + 3}} = \dfrac{{5{x^4} + 5{x^4}}}{{5{x^4} - 2{x^2} + 7x - 3}} - \dfrac{{5{x^4} - 2{x^2} + 7x - 3}}{{5{x^4} - 2{x^2} + 7x - 3}}$
$ \Rightarrow \dfrac{{6{x^4}}}{{3{x^4} - {x^2} + 2x + 3}} - 1 = \dfrac{{10{x^4}}}{{5{x^4} - 2{x^2} + 7x - 3}} - 1$
$ \Rightarrow \dfrac{{6{x^4}}}{{3{x^4} - {x^2} + 2x + 3}} = \dfrac{{10{x^4}}}{{5{x^4} - 2{x^2} + 7x - 3}}$
And we apply cross multiplication,
$ \Rightarrow 3 \times \left( {5{x^4} - 2{x^2} + 7x - 3} \right) = 5 \times \left( {3{x^4} - {x^2} + 2x + 3} \right)$
$
\Rightarrow {\text{15}}{{\text{x}}^4} - 6{x^2} + 21x - 9 = 15{x^4} - 5{x^2} + 10x + 15 \\
\Rightarrow {x^2} - 11x + 24 = 0 \\
\Rightarrow \left( {x - 8} \right)\left( {x - 3} \right) = 0 \\
$
$\therefore x = 8,x = 3$
Note: Whenever we face such types of questions you have to simplify the equation as possible and rearrange equations to get the desired answer.
Complete step-by-step answer:
We will rewrite question as
$\dfrac{{3{x^4} + 3{x^4} - 3{x^4} + {x^2} - 2x - 3}}{{3{x^4} - {x^2} + 2x + 3}} = \dfrac{{5{x^4} + 5{x^4} - 5{x^4} + 2{x^2} - 7x + 3}}{{5{x^4} - 2{x^2} + 7x - 3}}$
$ \Rightarrow \dfrac{{3{x^4} + 3{x^4}}}{{3{x^4} - {x^2} + 2x + 3}} - \dfrac{{3{x^4} - {x^2} + 2x + 3}}{{3{x^4} - {x^2} + 2x + 3}} = \dfrac{{5{x^4} + 5{x^4}}}{{5{x^4} - 2{x^2} + 7x - 3}} - \dfrac{{5{x^4} - 2{x^2} + 7x - 3}}{{5{x^4} - 2{x^2} + 7x - 3}}$
$ \Rightarrow \dfrac{{6{x^4}}}{{3{x^4} - {x^2} + 2x + 3}} - 1 = \dfrac{{10{x^4}}}{{5{x^4} - 2{x^2} + 7x - 3}} - 1$
$ \Rightarrow \dfrac{{6{x^4}}}{{3{x^4} - {x^2} + 2x + 3}} = \dfrac{{10{x^4}}}{{5{x^4} - 2{x^2} + 7x - 3}}$
And we apply cross multiplication,
$ \Rightarrow 3 \times \left( {5{x^4} - 2{x^2} + 7x - 3} \right) = 5 \times \left( {3{x^4} - {x^2} + 2x + 3} \right)$
$
\Rightarrow {\text{15}}{{\text{x}}^4} - 6{x^2} + 21x - 9 = 15{x^4} - 5{x^2} + 10x + 15 \\
\Rightarrow {x^2} - 11x + 24 = 0 \\
\Rightarrow \left( {x - 8} \right)\left( {x - 3} \right) = 0 \\
$
$\therefore x = 8,x = 3$
Note: Whenever we face such types of questions you have to simplify the equation as possible and rearrange equations to get the desired answer.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

10 examples of friction in our daily life

