
Solve the following equation :$\dfrac{{3{x^4} + {x^2} - 2x - 3}}{{3{x^4} - {x^2} + 2x + 3}} = \dfrac{{5{x^4} + 2{x^2} - 7x + 3}}{{5{x^4} - 2{x^2} + 7x - 3}}$.
Answer
599.1k+ views
Hint: Here, we go through by rearranging the equation so that we eliminate it easily and factorise the final equation to find the value of x.
Complete step-by-step answer:
We will rewrite question as
$\dfrac{{3{x^4} + 3{x^4} - 3{x^4} + {x^2} - 2x - 3}}{{3{x^4} - {x^2} + 2x + 3}} = \dfrac{{5{x^4} + 5{x^4} - 5{x^4} + 2{x^2} - 7x + 3}}{{5{x^4} - 2{x^2} + 7x - 3}}$
$ \Rightarrow \dfrac{{3{x^4} + 3{x^4}}}{{3{x^4} - {x^2} + 2x + 3}} - \dfrac{{3{x^4} - {x^2} + 2x + 3}}{{3{x^4} - {x^2} + 2x + 3}} = \dfrac{{5{x^4} + 5{x^4}}}{{5{x^4} - 2{x^2} + 7x - 3}} - \dfrac{{5{x^4} - 2{x^2} + 7x - 3}}{{5{x^4} - 2{x^2} + 7x - 3}}$
$ \Rightarrow \dfrac{{6{x^4}}}{{3{x^4} - {x^2} + 2x + 3}} - 1 = \dfrac{{10{x^4}}}{{5{x^4} - 2{x^2} + 7x - 3}} - 1$
$ \Rightarrow \dfrac{{6{x^4}}}{{3{x^4} - {x^2} + 2x + 3}} = \dfrac{{10{x^4}}}{{5{x^4} - 2{x^2} + 7x - 3}}$
And we apply cross multiplication,
$ \Rightarrow 3 \times \left( {5{x^4} - 2{x^2} + 7x - 3} \right) = 5 \times \left( {3{x^4} - {x^2} + 2x + 3} \right)$
$
\Rightarrow {\text{15}}{{\text{x}}^4} - 6{x^2} + 21x - 9 = 15{x^4} - 5{x^2} + 10x + 15 \\
\Rightarrow {x^2} - 11x + 24 = 0 \\
\Rightarrow \left( {x - 8} \right)\left( {x - 3} \right) = 0 \\
$
$\therefore x = 8,x = 3$
Note: Whenever we face such types of questions you have to simplify the equation as possible and rearrange equations to get the desired answer.
Complete step-by-step answer:
We will rewrite question as
$\dfrac{{3{x^4} + 3{x^4} - 3{x^4} + {x^2} - 2x - 3}}{{3{x^4} - {x^2} + 2x + 3}} = \dfrac{{5{x^4} + 5{x^4} - 5{x^4} + 2{x^2} - 7x + 3}}{{5{x^4} - 2{x^2} + 7x - 3}}$
$ \Rightarrow \dfrac{{3{x^4} + 3{x^4}}}{{3{x^4} - {x^2} + 2x + 3}} - \dfrac{{3{x^4} - {x^2} + 2x + 3}}{{3{x^4} - {x^2} + 2x + 3}} = \dfrac{{5{x^4} + 5{x^4}}}{{5{x^4} - 2{x^2} + 7x - 3}} - \dfrac{{5{x^4} - 2{x^2} + 7x - 3}}{{5{x^4} - 2{x^2} + 7x - 3}}$
$ \Rightarrow \dfrac{{6{x^4}}}{{3{x^4} - {x^2} + 2x + 3}} - 1 = \dfrac{{10{x^4}}}{{5{x^4} - 2{x^2} + 7x - 3}} - 1$
$ \Rightarrow \dfrac{{6{x^4}}}{{3{x^4} - {x^2} + 2x + 3}} = \dfrac{{10{x^4}}}{{5{x^4} - 2{x^2} + 7x - 3}}$
And we apply cross multiplication,
$ \Rightarrow 3 \times \left( {5{x^4} - 2{x^2} + 7x - 3} \right) = 5 \times \left( {3{x^4} - {x^2} + 2x + 3} \right)$
$
\Rightarrow {\text{15}}{{\text{x}}^4} - 6{x^2} + 21x - 9 = 15{x^4} - 5{x^2} + 10x + 15 \\
\Rightarrow {x^2} - 11x + 24 = 0 \\
\Rightarrow \left( {x - 8} \right)\left( {x - 3} \right) = 0 \\
$
$\therefore x = 8,x = 3$
Note: Whenever we face such types of questions you have to simplify the equation as possible and rearrange equations to get the desired answer.
Recently Updated Pages
Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

What is Environment class 11 chemistry CBSE

10 examples of diffusion in everyday life

Give four adaptations shown by flowers pollinated by class 11 biology CBSE

Bond order ofO2 O2+ O2 and O22 is in order A O2 langle class 11 chemistry CBSE

