
Solve the following equation: - \[\dfrac{3y}{2}+\dfrac{y+4}{4}=5-\dfrac{y-2}{4}\].
Answer
573.3k+ views
Hint: Multiply both sides of the equation with 4 to get rid of the fractional terms. Now, take the terms containing ‘y’ to the left – hand side. Apply simple addition and subtraction to simplify the terms. Find the value of ‘y’ to get the answer.
Complete step by step answer:
We have been provided with the equation: - \[\dfrac{3y}{2}+\dfrac{y+4}{4}=5-\dfrac{y-2}{4}\]. We have to solve this equation, that means we have to find the value of y.
As we can see that, this is a linear equation in one variable, which is y. Therefore, we have,
Multiplying both sides of the equation with 4, we get,
\[\begin{align}
& \Rightarrow \left( 2\times 3y \right)+\left( y+4 \right)=5\times 4-\left( y-2 \right) \\
& \Rightarrow 6y+y+4=20-y+2 \\
& \Rightarrow 7y+4=22-y \\
\end{align}\]
Taking the terms containing ‘y’ to the L.H.S and the constant terms to the R.H.S, we get,
\[\begin{align}
& \Rightarrow 7y+y=22-4 \\
& \Rightarrow 8y=18 \\
& \Rightarrow y=\dfrac{18}{8} \\
\end{align}\]
Cancelling the common factors, we get,
\[\Rightarrow y=\dfrac{9}{4}\]
Hence, the value of y is \[\dfrac{9}{4}\].
Note: One may note that we have been provided with a single equation only. The reason is that, we have to find the value of only one variable, that is y. So, if we have to solve an equation having ‘n’ number of variables then we should be provided with ‘n’ equations. Now, one can check the answer by substituting the obtained value of ‘y’ in the equation provided in the question. We have to determine the value of L.H.S and R.H.S separately and if they are equal then our answer is correct.
Complete step by step answer:
We have been provided with the equation: - \[\dfrac{3y}{2}+\dfrac{y+4}{4}=5-\dfrac{y-2}{4}\]. We have to solve this equation, that means we have to find the value of y.
As we can see that, this is a linear equation in one variable, which is y. Therefore, we have,
Multiplying both sides of the equation with 4, we get,
\[\begin{align}
& \Rightarrow \left( 2\times 3y \right)+\left( y+4 \right)=5\times 4-\left( y-2 \right) \\
& \Rightarrow 6y+y+4=20-y+2 \\
& \Rightarrow 7y+4=22-y \\
\end{align}\]
Taking the terms containing ‘y’ to the L.H.S and the constant terms to the R.H.S, we get,
\[\begin{align}
& \Rightarrow 7y+y=22-4 \\
& \Rightarrow 8y=18 \\
& \Rightarrow y=\dfrac{18}{8} \\
\end{align}\]
Cancelling the common factors, we get,
\[\Rightarrow y=\dfrac{9}{4}\]
Hence, the value of y is \[\dfrac{9}{4}\].
Note: One may note that we have been provided with a single equation only. The reason is that, we have to find the value of only one variable, that is y. So, if we have to solve an equation having ‘n’ number of variables then we should be provided with ‘n’ equations. Now, one can check the answer by substituting the obtained value of ‘y’ in the equation provided in the question. We have to determine the value of L.H.S and R.H.S separately and if they are equal then our answer is correct.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Full form of STD, ISD and PCO

Convert 40circ C to Fahrenheit A 104circ F B 107circ class 8 maths CBSE

Advantages and disadvantages of science

Right to vote is a AFundamental Right BFundamental class 8 social science CBSE


