
Solve the following equation : ${3^{{{\left( {{{\log }_9}x} \right)}^2} - \dfrac{9}{2}{{\log }_9}x + 5}} = 3\sqrt 3 $
Answer
520.5k+ views
Hint: We are going to convert the given equation into a quadratic equation by comparing the powers on both sides and then by applying the basic properties of logarithm the values of x are computed.
Complete step-by-step answer:
Given ${3^{{{\left( {{{\log }_9}x} \right)}^2} - \dfrac{9}{2}{{\log }_9}x + 5}} = 3\sqrt 3 $
Comparing the powers on both sides of the given equation, we get
\[{\left( {{{\log }_9}x} \right)^2} - {\log _9}x + 5 = \dfrac{3}{2}\]
Let \[\left( {{{\log }_9}x} \right) = y\]
$\therefore {y^2} - \dfrac{9}{2}y + 5 = \dfrac{3}{2}$
$ \Rightarrow 2{y^2} - 9y + 10 - 3 = 0$
$ \Rightarrow 2{y^2} - 9y + 7 = 0$
$ \Rightarrow 2{y^2} - 7y - 2y + 7 = 0$
$ \Rightarrow y(2y - 7) - (2y - 7) = 0$
$ \Rightarrow (y - 1)(2y - 7) = 0$
$\therefore y = 1,\dfrac{7}{2}$
When $y = 1$
$\therefore {\log _9}x = 1$
$ \Rightarrow x = 9{\text{ }}[\because {\log _b}x = y \Leftrightarrow x = {b^y}]$
When $y = \dfrac{7}{2}$
$\therefore {\log _9}x = \dfrac{7}{2}$
$
\Rightarrow x = {\left( 9 \right)^{\dfrac{7}{2}}}{\text{ }}[\because {\log _b}x = y \Leftrightarrow x = {b^y}] \\
\Rightarrow x = {\left( {{3^2}} \right)^{\dfrac{7}{2}}} \\
\Rightarrow x = {(3)^7} \\
$
$\therefore x = 9,{(3)^7}$
Note: To solve the given problems on logarithms. The basic properties and formulae should be known. Here, we used the basic property of logarithm ${\log _b}x = y \Leftrightarrow x = {b^y}$ i.e.., conversion of a logarithm form into exponential form.
Complete step-by-step answer:
Given ${3^{{{\left( {{{\log }_9}x} \right)}^2} - \dfrac{9}{2}{{\log }_9}x + 5}} = 3\sqrt 3 $
Comparing the powers on both sides of the given equation, we get
\[{\left( {{{\log }_9}x} \right)^2} - {\log _9}x + 5 = \dfrac{3}{2}\]
Let \[\left( {{{\log }_9}x} \right) = y\]
$\therefore {y^2} - \dfrac{9}{2}y + 5 = \dfrac{3}{2}$
$ \Rightarrow 2{y^2} - 9y + 10 - 3 = 0$
$ \Rightarrow 2{y^2} - 9y + 7 = 0$
$ \Rightarrow 2{y^2} - 7y - 2y + 7 = 0$
$ \Rightarrow y(2y - 7) - (2y - 7) = 0$
$ \Rightarrow (y - 1)(2y - 7) = 0$
$\therefore y = 1,\dfrac{7}{2}$
When $y = 1$
$\therefore {\log _9}x = 1$
$ \Rightarrow x = 9{\text{ }}[\because {\log _b}x = y \Leftrightarrow x = {b^y}]$
When $y = \dfrac{7}{2}$
$\therefore {\log _9}x = \dfrac{7}{2}$
$
\Rightarrow x = {\left( 9 \right)^{\dfrac{7}{2}}}{\text{ }}[\because {\log _b}x = y \Leftrightarrow x = {b^y}] \\
\Rightarrow x = {\left( {{3^2}} \right)^{\dfrac{7}{2}}} \\
\Rightarrow x = {(3)^7} \\
$
$\therefore x = 9,{(3)^7}$
Note: To solve the given problems on logarithms. The basic properties and formulae should be known. Here, we used the basic property of logarithm ${\log _b}x = y \Leftrightarrow x = {b^y}$ i.e.., conversion of a logarithm form into exponential form.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Trending doubts
State and prove Bernoullis theorem class 11 physics CBSE

Raindrops are spherical because of A Gravitational class 11 physics CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

Write the differences between monocot plants and dicot class 11 biology CBSE

Why is steel more elastic than rubber class 11 physics CBSE

Explain why a There is no atmosphere on the moon b class 11 physics CBSE
