
Solve the following equation : ${3^{{{\left( {{{\log }_9}x} \right)}^2} - \dfrac{9}{2}{{\log }_9}x + 5}} = 3\sqrt 3 $
Answer
601.8k+ views
Hint: We are going to convert the given equation into a quadratic equation by comparing the powers on both sides and then by applying the basic properties of logarithm the values of x are computed.
Complete step-by-step answer:
Given ${3^{{{\left( {{{\log }_9}x} \right)}^2} - \dfrac{9}{2}{{\log }_9}x + 5}} = 3\sqrt 3 $
Comparing the powers on both sides of the given equation, we get
\[{\left( {{{\log }_9}x} \right)^2} - {\log _9}x + 5 = \dfrac{3}{2}\]
Let \[\left( {{{\log }_9}x} \right) = y\]
$\therefore {y^2} - \dfrac{9}{2}y + 5 = \dfrac{3}{2}$
$ \Rightarrow 2{y^2} - 9y + 10 - 3 = 0$
$ \Rightarrow 2{y^2} - 9y + 7 = 0$
$ \Rightarrow 2{y^2} - 7y - 2y + 7 = 0$
$ \Rightarrow y(2y - 7) - (2y - 7) = 0$
$ \Rightarrow (y - 1)(2y - 7) = 0$
$\therefore y = 1,\dfrac{7}{2}$
When $y = 1$
$\therefore {\log _9}x = 1$
$ \Rightarrow x = 9{\text{ }}[\because {\log _b}x = y \Leftrightarrow x = {b^y}]$
When $y = \dfrac{7}{2}$
$\therefore {\log _9}x = \dfrac{7}{2}$
$
\Rightarrow x = {\left( 9 \right)^{\dfrac{7}{2}}}{\text{ }}[\because {\log _b}x = y \Leftrightarrow x = {b^y}] \\
\Rightarrow x = {\left( {{3^2}} \right)^{\dfrac{7}{2}}} \\
\Rightarrow x = {(3)^7} \\
$
$\therefore x = 9,{(3)^7}$
Note: To solve the given problems on logarithms. The basic properties and formulae should be known. Here, we used the basic property of logarithm ${\log _b}x = y \Leftrightarrow x = {b^y}$ i.e.., conversion of a logarithm form into exponential form.
Complete step-by-step answer:
Given ${3^{{{\left( {{{\log }_9}x} \right)}^2} - \dfrac{9}{2}{{\log }_9}x + 5}} = 3\sqrt 3 $
Comparing the powers on both sides of the given equation, we get
\[{\left( {{{\log }_9}x} \right)^2} - {\log _9}x + 5 = \dfrac{3}{2}\]
Let \[\left( {{{\log }_9}x} \right) = y\]
$\therefore {y^2} - \dfrac{9}{2}y + 5 = \dfrac{3}{2}$
$ \Rightarrow 2{y^2} - 9y + 10 - 3 = 0$
$ \Rightarrow 2{y^2} - 9y + 7 = 0$
$ \Rightarrow 2{y^2} - 7y - 2y + 7 = 0$
$ \Rightarrow y(2y - 7) - (2y - 7) = 0$
$ \Rightarrow (y - 1)(2y - 7) = 0$
$\therefore y = 1,\dfrac{7}{2}$
When $y = 1$
$\therefore {\log _9}x = 1$
$ \Rightarrow x = 9{\text{ }}[\because {\log _b}x = y \Leftrightarrow x = {b^y}]$
When $y = \dfrac{7}{2}$
$\therefore {\log _9}x = \dfrac{7}{2}$
$
\Rightarrow x = {\left( 9 \right)^{\dfrac{7}{2}}}{\text{ }}[\because {\log _b}x = y \Leftrightarrow x = {b^y}] \\
\Rightarrow x = {\left( {{3^2}} \right)^{\dfrac{7}{2}}} \\
\Rightarrow x = {(3)^7} \\
$
$\therefore x = 9,{(3)^7}$
Note: To solve the given problems on logarithms. The basic properties and formulae should be known. Here, we used the basic property of logarithm ${\log _b}x = y \Leftrightarrow x = {b^y}$ i.e.., conversion of a logarithm form into exponential form.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

