
Solve the following :
$\dfrac{{\sin \left( {{{10}^ \circ }} \right) + \sin \left( {{{20}^ \circ }} \right) + \sin \left( {{{40}^ \circ }} \right) + \sin \left( {{{50}^ \circ }} \right)}}{{\cos \left( {{{10}^ \circ }} \right) + \cos \left( {{{20}^ \circ }} \right) + \cos \left( {{{40}^ \circ }} \right) + \cos \left( {{{50}^ \circ }} \right)}} = $ ?
Answer
493.5k+ views
Hint: In this question, first we need to identify how we can use our trigonometric identities. Here we can see that we can club angle of ten degrees with fifty degrees and angle of twenty degrees with forty degrees. Here we can use the identity of $\sin C + \sin D$ and $\cos C + \cos D$.
Formula used: $\left( 1 \right)\,\,\sin C + \sin D = 2\sin \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right)$
$\left( 2 \right)\,\,\cos C + \cos D = 2\cos \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right)$
Complete step by step answer:
In the above question, we have
$ = \dfrac{{\sin \left( {{{10}^ \circ }} \right) + \sin \left( {{{20}^ \circ }} \right) + \sin \left( {{{40}^ \circ }} \right) + \sin \left( {{{50}^ \circ }} \right)}}{{\cos \left( {{{10}^ \circ }} \right) + \cos \left( {{{20}^ \circ }} \right) + \cos \left( {{{40}^ \circ }} \right) + \cos \left( {{{50}^ \circ }} \right)}}$
We can also write it as
$ = \dfrac{{\sin \left( {{{10}^ \circ }} \right) + \sin \left( {{{50}^ \circ }} \right) + \sin \left( {{{40}^ \circ }} \right) + \sin \left( {{{20}^ \circ }} \right)}}{{\cos \left( {{{10}^ \circ }} \right) + \cos \left( {{{50}^ \circ }} \right) + \cos \left( {{{40}^ \circ }} \right) + \cos \left( {{{20}^ \circ }} \right)}}$
Now use the identities $\sin C + \sin D = 2\sin \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right)$ and $\cos C + \cos D = 2\cos \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right)$.
\[ = \dfrac{{2\sin \left( {\dfrac{{50 + 10}}{2}} \right)\cos \left( {\dfrac{{50 - 10}}{2}} \right) + 2\sin \left( {\dfrac{{40 + 20}}{2}} \right)\cos \left( {\dfrac{{40 - 20}}{2}} \right)}}{{2\cos \left( {\dfrac{{50 + 10}}{2}} \right)\cos \left( {\dfrac{{50 - 10}}{2}} \right) + 2\cos \left( {\dfrac{{40 + 20}}{2}} \right)\cos \left( {\dfrac{{40 - 20}}{2}} \right)}}\]
\[ = \dfrac{{2\sin \left( {30} \right)\cos \left( {20} \right) + 2\sin \left( {30} \right)\cos \left( {10} \right)}}{{2\cos \left( {30} \right)\cos \left( {20} \right) + 2\cos \left( {30} \right)\cos \left( {10} \right)}}\]
Now we know that $\sin \left( {30} \right) = \dfrac{1}{2}\,\,and\,\,\cos \left( {30} \right) = \dfrac{{\sqrt 3 }}{2}$.
\[ = \dfrac{{2 \times \dfrac{1}{2}\cos \left( {20} \right) + 2 \times \dfrac{1}{2}\cos \left( {10} \right)}}{{2 \times \dfrac{{\sqrt 3 }}{2}\cos \left( {20} \right) + 2 \times \dfrac{{\sqrt 3 }}{2}\cos \left( {10} \right)}}\]
On simplification in numerator and denominator, we get
\[ = \dfrac{{\cos \left( {20} \right) + \cos \left( {10} \right)}}{{\sqrt 3 \cos \left( {20} \right) + \sqrt 3 \cos \left( {10} \right)}}\]
Now taking the common $\sqrt 3 $ from the denominator.
\[ = \dfrac{{\cos \left( {20} \right) + \cos \left( {10} \right)}}{{\sqrt 3 \left( {\cos \left( {20} \right) + \cos \left( {10} \right)} \right)}}\]
$ = \dfrac{1}{{\sqrt 3 }}$
Therefore, the value of the given trigonometric expression is $\dfrac{1}{{\sqrt 3 }}$.
Note:
We can also do this question by simply finding the value of each quantity with the help of a calculator and then putting them in numerator and denominator and then we can solve it. But whenever we see a question from trigonometry, the first thing which would come in our mind is the use of identities.
Formula used: $\left( 1 \right)\,\,\sin C + \sin D = 2\sin \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right)$
$\left( 2 \right)\,\,\cos C + \cos D = 2\cos \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right)$
Complete step by step answer:
In the above question, we have
$ = \dfrac{{\sin \left( {{{10}^ \circ }} \right) + \sin \left( {{{20}^ \circ }} \right) + \sin \left( {{{40}^ \circ }} \right) + \sin \left( {{{50}^ \circ }} \right)}}{{\cos \left( {{{10}^ \circ }} \right) + \cos \left( {{{20}^ \circ }} \right) + \cos \left( {{{40}^ \circ }} \right) + \cos \left( {{{50}^ \circ }} \right)}}$
We can also write it as
$ = \dfrac{{\sin \left( {{{10}^ \circ }} \right) + \sin \left( {{{50}^ \circ }} \right) + \sin \left( {{{40}^ \circ }} \right) + \sin \left( {{{20}^ \circ }} \right)}}{{\cos \left( {{{10}^ \circ }} \right) + \cos \left( {{{50}^ \circ }} \right) + \cos \left( {{{40}^ \circ }} \right) + \cos \left( {{{20}^ \circ }} \right)}}$
Now use the identities $\sin C + \sin D = 2\sin \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right)$ and $\cos C + \cos D = 2\cos \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right)$.
\[ = \dfrac{{2\sin \left( {\dfrac{{50 + 10}}{2}} \right)\cos \left( {\dfrac{{50 - 10}}{2}} \right) + 2\sin \left( {\dfrac{{40 + 20}}{2}} \right)\cos \left( {\dfrac{{40 - 20}}{2}} \right)}}{{2\cos \left( {\dfrac{{50 + 10}}{2}} \right)\cos \left( {\dfrac{{50 - 10}}{2}} \right) + 2\cos \left( {\dfrac{{40 + 20}}{2}} \right)\cos \left( {\dfrac{{40 - 20}}{2}} \right)}}\]
\[ = \dfrac{{2\sin \left( {30} \right)\cos \left( {20} \right) + 2\sin \left( {30} \right)\cos \left( {10} \right)}}{{2\cos \left( {30} \right)\cos \left( {20} \right) + 2\cos \left( {30} \right)\cos \left( {10} \right)}}\]
Now we know that $\sin \left( {30} \right) = \dfrac{1}{2}\,\,and\,\,\cos \left( {30} \right) = \dfrac{{\sqrt 3 }}{2}$.
\[ = \dfrac{{2 \times \dfrac{1}{2}\cos \left( {20} \right) + 2 \times \dfrac{1}{2}\cos \left( {10} \right)}}{{2 \times \dfrac{{\sqrt 3 }}{2}\cos \left( {20} \right) + 2 \times \dfrac{{\sqrt 3 }}{2}\cos \left( {10} \right)}}\]
On simplification in numerator and denominator, we get
\[ = \dfrac{{\cos \left( {20} \right) + \cos \left( {10} \right)}}{{\sqrt 3 \cos \left( {20} \right) + \sqrt 3 \cos \left( {10} \right)}}\]
Now taking the common $\sqrt 3 $ from the denominator.
\[ = \dfrac{{\cos \left( {20} \right) + \cos \left( {10} \right)}}{{\sqrt 3 \left( {\cos \left( {20} \right) + \cos \left( {10} \right)} \right)}}\]
$ = \dfrac{1}{{\sqrt 3 }}$
Therefore, the value of the given trigonometric expression is $\dfrac{1}{{\sqrt 3 }}$.
Note:
We can also do this question by simply finding the value of each quantity with the help of a calculator and then putting them in numerator and denominator and then we can solve it. But whenever we see a question from trigonometry, the first thing which would come in our mind is the use of identities.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

