
Solve the following: \[\dfrac{{\cos A - \sin A + 1}}{{\cos A + \sin A - 1}} = \cos ecA + \cot A\].
Answer
497.1k+ views
Hint: In the given question , we will solve the expression on the LHS and prove it equal to the RHS expression . The expression in LHS contains \[\cos \] and \[\sin \] , so we will convert them to \[\cos ec\] and \[\cot \] by dividing the numerator and denominator by \[\sin A\] . Also we will be using a basic trigonometric identity i.e. \[\cos e{c^2}A = 1 + {\cot ^2}A\].
Complete step by step answer:
Given : \[\dfrac{{\cos A - \sin A + 1}}{{\cos A + \sin A - 1}}\]
Now on dividing the numerator and denominator by \[\sin A\] we get ,
\[LHS = \dfrac{{\dfrac{{\cos A}}{{\sin A}} - \dfrac{{\sin A}}{{\sin A}} + \dfrac{1}{{\sin A}}}}{{\dfrac{{\cos A}}{{\sin A}} + \dfrac{{\sin A}}{{\sin A}} - \dfrac{1}{{\sin A}}}}\]
On solving the above expression as \[\dfrac{1}{{\sin A}} = \cos ecA\] we get ,
\[LHS = \dfrac{{\cot A - 1 + \cos ecA}}{{\cot A + 1 - \cos ecA}}\]
Now in numerator we will use the trigonometric identity \[\cos e{c^2}A = 1 + {\cot ^2}A\] , we get
\[LHS = \dfrac{{\cot A + \cos ecA - \left( {\cos e{c^2}A - {{\cot }^2}A} \right)}}{{\cot A + 1 - \cos ecA}}\]
Now using the identity of \[{a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)\] , we get
\[ LHS= \dfrac{{\cot A + \cos ecA - \left[ {\left( {\cos ecA - \cot A} \right)\left( {\cos ecA + \cot A} \right)} \right]}}{{\cot A + 1 - \cos ecA}}\]
Now taking \[\left( {\cos ecA + \cot A} \right)\] common in numerator , we get
\[LHS = \dfrac{{\left( {\cot A + \cos ecA} \right)\left[ {1 - \left( {\cos ecA + \cot A} \right)} \right]}}{{\cot A + 1 - \cos ecA}}\]
On rearranging the terms in numerator we get ,
\[ LHS= \dfrac{{\left( {\cot A + \cos ecA} \right)\left[ {\cot A + 1 - \cos ecA} \right]}}{{\cot A + 1 - \cos ecA}}\]
Now cancelling out the term \[\cot A + 1 - \cos ecA\] from numerator and denominator , we get
\[LHS = \left( {\cot A + \cos ecA} \right)\]
Hence Proved. Therefore , the \[LHS = RHS\] .
Note: Alternate Method :
\[LHS = \dfrac{{\cos A - \sin A + 1}}{{\cos A + \sin A - 1}}\]
Now multiplying the numerator and denominator by \[\sin A\] we get ,
\[LHS = \dfrac{{\sin A\left( {\cos A - \sin A + 1} \right)}}{{\sin A\left( {\cos A + \sin A - 1} \right)}}\]
On solving we get ,
\[LHS = \dfrac{{\sin A\cos A - {{\sin }^2}A + \sin A}}{{\sin A\left( {\cos A + \sin A - 1} \right)}}\]
Now using the basic trigonometric identity \[{\sin ^2}A + {\cos ^2}A = 1\] in numerator we get ,
\[ LHS= \dfrac{{\sin A\cos A + \sin A - \left( {1 - {{\cos }^2}A} \right)}}{{\sin A\left( {\cos A + \sin A - 1} \right)}}\]
Now using the identity of \[{a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)\] , we get
\[LHS = \dfrac{{\sin A\cos A + \sin A - \left[ {\left( {1 - \cos A} \right)\left( {1 + \cos A} \right)} \right]}}{{\sin A\left( {\cos A + \sin A - 1} \right)}}\]
Now taking \[\sin A\] common in numerator we get ,
\[ LHS= \dfrac{{\sin A\left( {\cos A + 1} \right) - \left[ {\left( {1 - \cos A} \right)\left( {1 + \cos A} \right)} \right]}}{{\sin A\left( {\cos A + \sin A - 1} \right)}}\]
Now taking \[\left( {\cos A + 1} \right)\] common from the numerator we get ,
\[ LHS= \dfrac{{\left( {\cos A + 1} \right)\left[ {\sin A - \left( {1 - \cos A} \right)} \right]}}{{\sin A\left( {\cos A + \sin A - 1} \right)}}\]
On rearranging the terms in numerator we get ,
\[LHS = \dfrac{{\left( {\cos A + 1} \right)\left( {\cos A + \sin A - 1} \right)}}{{\sin A\left( {\cos A + \sin A - 1} \right)}}\]
Now cancelling out the term \[\left( {\cos A + \sin A - 1} \right)\] from numerator and denominator we get ,
\[LHS = \dfrac{{\left( {\cos A + 1} \right)}}{{\sin A}}\]
On simplifying we get ,
\[ LHS= \dfrac{{\cos A}}{{\sin A}} + \dfrac{1}{{\sin A}}\]
On solving as \[\dfrac{1}{{\sin A}} = \cos ecA\] we get ,
\[LHS = \cot A + \cos ecA\]
Hence Proved.
Complete step by step answer:
Given : \[\dfrac{{\cos A - \sin A + 1}}{{\cos A + \sin A - 1}}\]
Now on dividing the numerator and denominator by \[\sin A\] we get ,
\[LHS = \dfrac{{\dfrac{{\cos A}}{{\sin A}} - \dfrac{{\sin A}}{{\sin A}} + \dfrac{1}{{\sin A}}}}{{\dfrac{{\cos A}}{{\sin A}} + \dfrac{{\sin A}}{{\sin A}} - \dfrac{1}{{\sin A}}}}\]
On solving the above expression as \[\dfrac{1}{{\sin A}} = \cos ecA\] we get ,
\[LHS = \dfrac{{\cot A - 1 + \cos ecA}}{{\cot A + 1 - \cos ecA}}\]
Now in numerator we will use the trigonometric identity \[\cos e{c^2}A = 1 + {\cot ^2}A\] , we get
\[LHS = \dfrac{{\cot A + \cos ecA - \left( {\cos e{c^2}A - {{\cot }^2}A} \right)}}{{\cot A + 1 - \cos ecA}}\]
Now using the identity of \[{a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)\] , we get
\[ LHS= \dfrac{{\cot A + \cos ecA - \left[ {\left( {\cos ecA - \cot A} \right)\left( {\cos ecA + \cot A} \right)} \right]}}{{\cot A + 1 - \cos ecA}}\]
Now taking \[\left( {\cos ecA + \cot A} \right)\] common in numerator , we get
\[LHS = \dfrac{{\left( {\cot A + \cos ecA} \right)\left[ {1 - \left( {\cos ecA + \cot A} \right)} \right]}}{{\cot A + 1 - \cos ecA}}\]
On rearranging the terms in numerator we get ,
\[ LHS= \dfrac{{\left( {\cot A + \cos ecA} \right)\left[ {\cot A + 1 - \cos ecA} \right]}}{{\cot A + 1 - \cos ecA}}\]
Now cancelling out the term \[\cot A + 1 - \cos ecA\] from numerator and denominator , we get
\[LHS = \left( {\cot A + \cos ecA} \right)\]
Hence Proved. Therefore , the \[LHS = RHS\] .
Note: Alternate Method :
\[LHS = \dfrac{{\cos A - \sin A + 1}}{{\cos A + \sin A - 1}}\]
Now multiplying the numerator and denominator by \[\sin A\] we get ,
\[LHS = \dfrac{{\sin A\left( {\cos A - \sin A + 1} \right)}}{{\sin A\left( {\cos A + \sin A - 1} \right)}}\]
On solving we get ,
\[LHS = \dfrac{{\sin A\cos A - {{\sin }^2}A + \sin A}}{{\sin A\left( {\cos A + \sin A - 1} \right)}}\]
Now using the basic trigonometric identity \[{\sin ^2}A + {\cos ^2}A = 1\] in numerator we get ,
\[ LHS= \dfrac{{\sin A\cos A + \sin A - \left( {1 - {{\cos }^2}A} \right)}}{{\sin A\left( {\cos A + \sin A - 1} \right)}}\]
Now using the identity of \[{a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)\] , we get
\[LHS = \dfrac{{\sin A\cos A + \sin A - \left[ {\left( {1 - \cos A} \right)\left( {1 + \cos A} \right)} \right]}}{{\sin A\left( {\cos A + \sin A - 1} \right)}}\]
Now taking \[\sin A\] common in numerator we get ,
\[ LHS= \dfrac{{\sin A\left( {\cos A + 1} \right) - \left[ {\left( {1 - \cos A} \right)\left( {1 + \cos A} \right)} \right]}}{{\sin A\left( {\cos A + \sin A - 1} \right)}}\]
Now taking \[\left( {\cos A + 1} \right)\] common from the numerator we get ,
\[ LHS= \dfrac{{\left( {\cos A + 1} \right)\left[ {\sin A - \left( {1 - \cos A} \right)} \right]}}{{\sin A\left( {\cos A + \sin A - 1} \right)}}\]
On rearranging the terms in numerator we get ,
\[LHS = \dfrac{{\left( {\cos A + 1} \right)\left( {\cos A + \sin A - 1} \right)}}{{\sin A\left( {\cos A + \sin A - 1} \right)}}\]
Now cancelling out the term \[\left( {\cos A + \sin A - 1} \right)\] from numerator and denominator we get ,
\[LHS = \dfrac{{\left( {\cos A + 1} \right)}}{{\sin A}}\]
On simplifying we get ,
\[ LHS= \dfrac{{\cos A}}{{\sin A}} + \dfrac{1}{{\sin A}}\]
On solving as \[\dfrac{1}{{\sin A}} = \cos ecA\] we get ,
\[LHS = \cot A + \cos ecA\]
Hence Proved.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

