
Solve the following:
(a) Evaluate $\sin \left( {{\cos }^{-1}}\dfrac{3}{5} \right)$
(b) Evaluate $\cos \left( {{\tan }^{-1}}\dfrac{3}{4} \right)$ and $\cos \left( {{\tan }^{-1}}x \right)$
(c) If $\sin \left( {{\cot }^{-1}}\left( 1+x \right) \right)=\cos \left( {{\tan }^{-1}}x \right)$ then $x$ is
(a) $\dfrac{1}{2}$
(b) $1$
(c) $0$
(d) $-\dfrac{1}{2}$
(d) Evaluate $\sin \left( {{\cot }^{-1}}x \right)$
(e) Evaluate $\sin \left( 2{{\sin }^{-1}}0.8 \right)$
Answer
585.9k+ views
Hint: We will assign an angle to the inverse trigonometric functions. Then we will rearrange the equations to simplify them. We will use the identity ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$ to substitute certain terms in the equations and find the requires values.
Complete step by step answer:
(a) $\sin \left( {{\cos }^{-1}}\dfrac{3}{5} \right)$
Let ${{\cos }^{-1}}\dfrac{3}{5}=\theta $. So we have $\cos \theta =\dfrac{3}{5}$.
Using the identity ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$, we know that ${{\sin }^{2}}\theta =1-{{\cos }^{2}}\theta $. Substituting the value of $\cos \theta $ in this equation, we get ${{\sin }^{2}}\theta =1-{{\left( \dfrac{3}{5} \right)}^{2}}=1-\dfrac{9}{25}=\dfrac{16}{25}$ . Therefore, by taking square root on both sides of this equation, we get $\sin \theta =\dfrac{4}{5}$ . That is, $\sin \left( {{\cos }^{-1}}\dfrac{3}{5} \right)=\dfrac{4}{5}$.
(b) $\cos \left( {{\tan }^{-1}}\dfrac{3}{4} \right)$
Let ${{\tan }^{-1}}\dfrac{3}{4}=\theta $. Therefore, we have $\tan \theta =\dfrac{3}{4}$. We can write $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ and we can substitute $\sin \theta =\sqrt{1-{{\cos }^{2}}\theta }$. Therefore, we have the following equation,
$\dfrac{\sqrt{1-{{\cos }^{2}}\theta }}{\cos \theta }=\dfrac{3}{4}$ .
Squaring both sides and rearranging the equation, we get
$\begin{align}
& \dfrac{\sqrt{1-{{\cos }^{2}}\theta }}{\cos \theta }=\dfrac{3}{4} \\
& 16\times (1-{{\cos }^{2}}\theta )=9\times {{\cos }^{2}}\theta \\
& 16-16{{\cos }^{2}}\theta =9{{\cos }^{2}}\theta \\
& 25{{\cos }^{2}}\theta =16 \\
& {{\cos }^{2}}\theta =\dfrac{16}{25} \\
& \cos \theta =\dfrac{4}{5} \\
\end{align}$
Therefore, resubstituting the value of $\theta $, we get $\cos \left( {{\tan }^{-1}}\dfrac{3}{4} \right)=\dfrac{4}{5}$.
Now, we will use similar method to find the value of $\cos ({{\tan }^{-1}}x)$. Let ${{\tan }^{-1}}x=\theta $.
Therefore, we have $\tan \theta =x$. Writing $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ and substituting $\sin \theta =\sqrt{1-{{\cos }^{2}}\theta }$, we get
$\dfrac{\sqrt{1-{{\cos }^{2}}\theta }}{\cos \theta }=x$ .
Squaring both sides and rearranging the equation, we get
$\begin{align}
& \dfrac{\sqrt{1-{{\cos }^{2}}\theta }}{\cos \theta }=x \\
& (1-{{\cos }^{2}}\theta )={{x}^{2}}\times {{\cos }^{2}}\theta \\
& {{\cos }^{2}}\theta +{{x}^{2}}{{\cos }^{2}}\theta =1 \\
& (1+{{x}^{2}}){{\cos }^{2}}\theta =1 \\
& {{\cos }^{2}}\theta =\dfrac{1}{1+{{x}^{2}}} \\
& \cos \theta =\dfrac{1}{\sqrt{1+{{x}^{2}}}} \\
\end{align}$
Therefore, we have $\cos ({{\tan }^{-1}}x)=\dfrac{1}{\sqrt{1+{{x}^{2}}}}$ .
(c) $\sin \left( {{\cot }^{-1}}\left( 1+x \right) \right)=\cos \left( {{\tan }^{-1}}x \right)$
From the previous question, we know that the RHS is $\cos ({{\tan }^{-1}}x)=\dfrac{1}{\sqrt{1+{{x}^{2}}}}$. Let ${{\cot }^{-1}}(1+x)=\theta $.
Therefore, we have $\cot \theta =1+x$. Now, we will write $\cos \theta =\dfrac{\cos \theta }{\sin \theta }$ and substitute $\cos \theta =\sqrt{1-{{\sin }^{2}}\theta }$. We get the following equation,
$\dfrac{\sqrt{1-{{\sin }^{2}}\theta }}{\sin \theta }=1+x$
Squaring both sides and rearranging, we get
$\begin{align}
& \dfrac{1-{{\sin }^{2}}\theta }{{{\sin }^{2}}\theta }={{(1+x)}^{2}} \\
& \dfrac{1}{{{\sin }^{2}}\theta }-1=1+2x+{{x}^{2}} \\
& \dfrac{1}{{{\sin }^{2}}\theta }=2+2x+{{x}^{2}} \\
& \sin \theta =\dfrac{1}{\sqrt{2+2x+{{x}^{2}}}} \\
\end{align}$
Therefore, the LHS is $\sin \left( {{\cot }^{-1}}(1+x) \right)=\dfrac{1}{\sqrt{2+2x+{{x}^{2}}}}$ . So, now equating LHS and RHS, we get
$\dfrac{1}{\sqrt{2+2x+{{x}^{2}}}}=\dfrac{1}{\sqrt{1+{{x}^{2}}}}$
Squaring both sides and rearranging, we get
$\begin{align}
& \dfrac{1}{2+2x+{{x}^{2}}}=\dfrac{1}{1+{{x}^{2}}} \\
& 1+{{x}^{2}}=2+2x+{{x}^{2}} \\
& 1-2=2x \\
& x=-\dfrac{1}{2} \\
\end{align}$
So, the correct option is (d).
(d) $\sin \left( {{\cot }^{-1}}x \right)$
Let ${{\cot }^{-1}}x=\theta $. We will write $\cot \theta =\dfrac{\cos \theta }{\sin \theta }$ and substitute $\cos \theta =\sqrt{1-{{\sin }^{2}}\theta }$.
We will get the following,
$\begin{align}
& \cot \theta =x \\
& \dfrac{\cos \theta }{\sin \theta }=x \\
& \dfrac{\sqrt{1-{{\sin }^{2}}\theta }}{\sin \theta }=x \\
\end{align}$
Squaring both sides and rearranging, we get
$\begin{align}
& \dfrac{1-{{\sin }^{2}}\theta }{{{\sin }^{2}}\theta }={{x}^{2}} \\
& \dfrac{1}{{{\sin }^{2}}\theta }-1={{x}^{2}} \\
& \dfrac{1}{{{\sin }^{2}}\theta }={{x}^{2}}+1 \\
& {{\sin }^{2}}\theta =\dfrac{1}{{{x}^{2}}+1} \\
& \sin \theta =\dfrac{1}{\sqrt{{{x}^{2}}+1}} \\
\end{align}$
Therefore, we have $\sin \left( {{\cot }^{-1}}x \right)=\dfrac{1}{\sqrt{1+{{x}^{2}}}}$.
(e) $\sin \left( 2{{\sin }^{-1}}0.8 \right)$
Let ${{\sin }^{-1}}0.8=\theta $. Therefore, we have $\sin \theta =0.8$. Using the identity ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$, we get
$\cos \theta =\sqrt{1-{{\sin }^{2}}\theta }=\sqrt{1-{{(0.8)}^{2}}}=\sqrt{1-0.64}=\sqrt{0.36}=0.6$.
Now, $\sin \left( 2{{\sin }^{-1}}0.8 \right)=\sin (2\theta )$ and we have the identity $\sin 2\theta =2\sin \theta \cos \theta $. Substituting the values of $\sin \theta $ and $\cos \theta $, we get
$\sin \left( 2{{\sin }^{-1}}0.8 \right)=2\times 0.8\times 0.6=0.96$
Note:
To solve this question, we used trigonometric identities and relations. It is important to remember these as these are very useful. Solving such questions becomes easier in this manner. We should be careful while substituting and resubstituting values, as there is a possibility to go around in a loop while trying to simplify trigonometric equations.
Complete step by step answer:
(a) $\sin \left( {{\cos }^{-1}}\dfrac{3}{5} \right)$
Let ${{\cos }^{-1}}\dfrac{3}{5}=\theta $. So we have $\cos \theta =\dfrac{3}{5}$.
Using the identity ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$, we know that ${{\sin }^{2}}\theta =1-{{\cos }^{2}}\theta $. Substituting the value of $\cos \theta $ in this equation, we get ${{\sin }^{2}}\theta =1-{{\left( \dfrac{3}{5} \right)}^{2}}=1-\dfrac{9}{25}=\dfrac{16}{25}$ . Therefore, by taking square root on both sides of this equation, we get $\sin \theta =\dfrac{4}{5}$ . That is, $\sin \left( {{\cos }^{-1}}\dfrac{3}{5} \right)=\dfrac{4}{5}$.
(b) $\cos \left( {{\tan }^{-1}}\dfrac{3}{4} \right)$
Let ${{\tan }^{-1}}\dfrac{3}{4}=\theta $. Therefore, we have $\tan \theta =\dfrac{3}{4}$. We can write $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ and we can substitute $\sin \theta =\sqrt{1-{{\cos }^{2}}\theta }$. Therefore, we have the following equation,
$\dfrac{\sqrt{1-{{\cos }^{2}}\theta }}{\cos \theta }=\dfrac{3}{4}$ .
Squaring both sides and rearranging the equation, we get
$\begin{align}
& \dfrac{\sqrt{1-{{\cos }^{2}}\theta }}{\cos \theta }=\dfrac{3}{4} \\
& 16\times (1-{{\cos }^{2}}\theta )=9\times {{\cos }^{2}}\theta \\
& 16-16{{\cos }^{2}}\theta =9{{\cos }^{2}}\theta \\
& 25{{\cos }^{2}}\theta =16 \\
& {{\cos }^{2}}\theta =\dfrac{16}{25} \\
& \cos \theta =\dfrac{4}{5} \\
\end{align}$
Therefore, resubstituting the value of $\theta $, we get $\cos \left( {{\tan }^{-1}}\dfrac{3}{4} \right)=\dfrac{4}{5}$.
Now, we will use similar method to find the value of $\cos ({{\tan }^{-1}}x)$. Let ${{\tan }^{-1}}x=\theta $.
Therefore, we have $\tan \theta =x$. Writing $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ and substituting $\sin \theta =\sqrt{1-{{\cos }^{2}}\theta }$, we get
$\dfrac{\sqrt{1-{{\cos }^{2}}\theta }}{\cos \theta }=x$ .
Squaring both sides and rearranging the equation, we get
$\begin{align}
& \dfrac{\sqrt{1-{{\cos }^{2}}\theta }}{\cos \theta }=x \\
& (1-{{\cos }^{2}}\theta )={{x}^{2}}\times {{\cos }^{2}}\theta \\
& {{\cos }^{2}}\theta +{{x}^{2}}{{\cos }^{2}}\theta =1 \\
& (1+{{x}^{2}}){{\cos }^{2}}\theta =1 \\
& {{\cos }^{2}}\theta =\dfrac{1}{1+{{x}^{2}}} \\
& \cos \theta =\dfrac{1}{\sqrt{1+{{x}^{2}}}} \\
\end{align}$
Therefore, we have $\cos ({{\tan }^{-1}}x)=\dfrac{1}{\sqrt{1+{{x}^{2}}}}$ .
(c) $\sin \left( {{\cot }^{-1}}\left( 1+x \right) \right)=\cos \left( {{\tan }^{-1}}x \right)$
From the previous question, we know that the RHS is $\cos ({{\tan }^{-1}}x)=\dfrac{1}{\sqrt{1+{{x}^{2}}}}$. Let ${{\cot }^{-1}}(1+x)=\theta $.
Therefore, we have $\cot \theta =1+x$. Now, we will write $\cos \theta =\dfrac{\cos \theta }{\sin \theta }$ and substitute $\cos \theta =\sqrt{1-{{\sin }^{2}}\theta }$. We get the following equation,
$\dfrac{\sqrt{1-{{\sin }^{2}}\theta }}{\sin \theta }=1+x$
Squaring both sides and rearranging, we get
$\begin{align}
& \dfrac{1-{{\sin }^{2}}\theta }{{{\sin }^{2}}\theta }={{(1+x)}^{2}} \\
& \dfrac{1}{{{\sin }^{2}}\theta }-1=1+2x+{{x}^{2}} \\
& \dfrac{1}{{{\sin }^{2}}\theta }=2+2x+{{x}^{2}} \\
& \sin \theta =\dfrac{1}{\sqrt{2+2x+{{x}^{2}}}} \\
\end{align}$
Therefore, the LHS is $\sin \left( {{\cot }^{-1}}(1+x) \right)=\dfrac{1}{\sqrt{2+2x+{{x}^{2}}}}$ . So, now equating LHS and RHS, we get
$\dfrac{1}{\sqrt{2+2x+{{x}^{2}}}}=\dfrac{1}{\sqrt{1+{{x}^{2}}}}$
Squaring both sides and rearranging, we get
$\begin{align}
& \dfrac{1}{2+2x+{{x}^{2}}}=\dfrac{1}{1+{{x}^{2}}} \\
& 1+{{x}^{2}}=2+2x+{{x}^{2}} \\
& 1-2=2x \\
& x=-\dfrac{1}{2} \\
\end{align}$
So, the correct option is (d).
(d) $\sin \left( {{\cot }^{-1}}x \right)$
Let ${{\cot }^{-1}}x=\theta $. We will write $\cot \theta =\dfrac{\cos \theta }{\sin \theta }$ and substitute $\cos \theta =\sqrt{1-{{\sin }^{2}}\theta }$.
We will get the following,
$\begin{align}
& \cot \theta =x \\
& \dfrac{\cos \theta }{\sin \theta }=x \\
& \dfrac{\sqrt{1-{{\sin }^{2}}\theta }}{\sin \theta }=x \\
\end{align}$
Squaring both sides and rearranging, we get
$\begin{align}
& \dfrac{1-{{\sin }^{2}}\theta }{{{\sin }^{2}}\theta }={{x}^{2}} \\
& \dfrac{1}{{{\sin }^{2}}\theta }-1={{x}^{2}} \\
& \dfrac{1}{{{\sin }^{2}}\theta }={{x}^{2}}+1 \\
& {{\sin }^{2}}\theta =\dfrac{1}{{{x}^{2}}+1} \\
& \sin \theta =\dfrac{1}{\sqrt{{{x}^{2}}+1}} \\
\end{align}$
Therefore, we have $\sin \left( {{\cot }^{-1}}x \right)=\dfrac{1}{\sqrt{1+{{x}^{2}}}}$.
(e) $\sin \left( 2{{\sin }^{-1}}0.8 \right)$
Let ${{\sin }^{-1}}0.8=\theta $. Therefore, we have $\sin \theta =0.8$. Using the identity ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$, we get
$\cos \theta =\sqrt{1-{{\sin }^{2}}\theta }=\sqrt{1-{{(0.8)}^{2}}}=\sqrt{1-0.64}=\sqrt{0.36}=0.6$.
Now, $\sin \left( 2{{\sin }^{-1}}0.8 \right)=\sin (2\theta )$ and we have the identity $\sin 2\theta =2\sin \theta \cos \theta $. Substituting the values of $\sin \theta $ and $\cos \theta $, we get
$\sin \left( 2{{\sin }^{-1}}0.8 \right)=2\times 0.8\times 0.6=0.96$
Note:
To solve this question, we used trigonometric identities and relations. It is important to remember these as these are very useful. Solving such questions becomes easier in this manner. We should be careful while substituting and resubstituting values, as there is a possibility to go around in a loop while trying to simplify trigonometric equations.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

