
Solve the expression $\sin 10^\circ + \sin 20^\circ + \sin 40^\circ + \sin 50^\circ = \sin 70^\circ + \sin 80^\circ $.
Answer
484.8k+ views
Hint: In the given question, we are given a problem in the form of addition of sine functions. We can solve the given problem by using formula of addition of two $\sin $ functions, $\sin A + \sin B$. Take $\sin 50^\circ + \sin 10^\circ $ and $\sin 40^\circ + \sin 20^\circ $, simplify these two using the formula. Substitute values of trigonometric ratios wherever required and at the end convert the cosine function of trigonometry into the sine function of trigonometry.
Formula used: $\sin A + \sin B$
Complete step-by-step solution:
We have, $\sin 10^\circ + \sin 20^\circ + \sin 40^\circ + \sin 50^\circ = \sin 70^\circ + \sin 80^\circ $
Here, LHS: $\sin 10 + \sin 20 + \sin 40 + \sin 50$
We know the formula of addition of two $\sin $ functions, $\sin A + \sin B$.
$\sin A + \sin B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)$
Let us take the given problem in the form of addition of two $\sin $ functions.
$\left( {\sin 50 + \sin 10} \right) + \left( {\sin 40 + \sin 20} \right)$
Apply the above written formula,
$ \Rightarrow \left( {2\sin \left( {\dfrac{{50 + 10}}{2}} \right)\cos \left( {\dfrac{{50 - 10}}{2}} \right)} \right) + \left( {2\sin \left( {\dfrac{{40 + 20}}{2}} \right)\cos \left( {\dfrac{{40 - 20}}{2}} \right)} \right)$
On Addition and subtraction of angles, we get
$ \Rightarrow \left( {2\sin \left( {\dfrac{{60}}{2}} \right)\cos \left( {\dfrac{{40}}{2}} \right)} \right) + \left( {2\sin \left( {\dfrac{{60}}{2}} \right)\cos \left( {\dfrac{{20}}{2}} \right)} \right)$
On division of angles inside the brackets, we get
$ \Rightarrow 2\sin 30\cos 20 + 2\sin 30\cos 10$
Take $2\sin 30^\circ $ as common
$ \Rightarrow 2\sin 30\left( {\cos 20 + \cos 10} \right)$
We know the value of, $\sin 30^\circ = \dfrac{1}{2}$
On substituting value of $\sin x$, we get
$ \Rightarrow 2 \times \dfrac{1}{2}\left( {\cos 20 + \cos 10} \right)$
$ \Rightarrow \cos 20 + \cos 10$
By using the trigonometric cosine function $\cos \left( {90 - \theta } \right) = \sin \theta $ we get
$ \Rightarrow \cos \left( {90 - 70} \right) + \cos \left( {90 - 80} \right)$
$ \Rightarrow \sin 70 + \sin 80$
The value we obtained after solving the LHS is equal to RHS value, hence proved LHS = RHS.
Note: To solve these type of questions we should know all the required values of standard angles say, $0^\circ $, $30^\circ $, $60^\circ $, $90^\circ $, $180^\circ $, $270^\circ $, $360^\circ $ respectively for each trigonometric term such as $\sin $, $\cos $, $\tan $, $\cot $, $\sec $, $\cos ec$, etc. We should take care of the calculations so as to be sure of our final answer. In the given question we added two $\sin $ functions. Similarly we can subtract two $\sin $ functions using formula of subtraction of two $\sin $ functions. Also, subtract or add two $\cos $ functions by using formulae. Such as,
$\sin A - \sin B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)$
$\cos A - \cos B = - 2\sin \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)$
$\cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)$
We use them according to the given problem.
Formula used: $\sin A + \sin B$
Complete step-by-step solution:
We have, $\sin 10^\circ + \sin 20^\circ + \sin 40^\circ + \sin 50^\circ = \sin 70^\circ + \sin 80^\circ $
Here, LHS: $\sin 10 + \sin 20 + \sin 40 + \sin 50$
We know the formula of addition of two $\sin $ functions, $\sin A + \sin B$.
$\sin A + \sin B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)$
Let us take the given problem in the form of addition of two $\sin $ functions.
$\left( {\sin 50 + \sin 10} \right) + \left( {\sin 40 + \sin 20} \right)$
Apply the above written formula,
$ \Rightarrow \left( {2\sin \left( {\dfrac{{50 + 10}}{2}} \right)\cos \left( {\dfrac{{50 - 10}}{2}} \right)} \right) + \left( {2\sin \left( {\dfrac{{40 + 20}}{2}} \right)\cos \left( {\dfrac{{40 - 20}}{2}} \right)} \right)$
On Addition and subtraction of angles, we get
$ \Rightarrow \left( {2\sin \left( {\dfrac{{60}}{2}} \right)\cos \left( {\dfrac{{40}}{2}} \right)} \right) + \left( {2\sin \left( {\dfrac{{60}}{2}} \right)\cos \left( {\dfrac{{20}}{2}} \right)} \right)$
On division of angles inside the brackets, we get
$ \Rightarrow 2\sin 30\cos 20 + 2\sin 30\cos 10$
Take $2\sin 30^\circ $ as common
$ \Rightarrow 2\sin 30\left( {\cos 20 + \cos 10} \right)$
We know the value of, $\sin 30^\circ = \dfrac{1}{2}$
On substituting value of $\sin x$, we get
$ \Rightarrow 2 \times \dfrac{1}{2}\left( {\cos 20 + \cos 10} \right)$
$ \Rightarrow \cos 20 + \cos 10$
By using the trigonometric cosine function $\cos \left( {90 - \theta } \right) = \sin \theta $ we get
$ \Rightarrow \cos \left( {90 - 70} \right) + \cos \left( {90 - 80} \right)$
$ \Rightarrow \sin 70 + \sin 80$
The value we obtained after solving the LHS is equal to RHS value, hence proved LHS = RHS.
Note: To solve these type of questions we should know all the required values of standard angles say, $0^\circ $, $30^\circ $, $60^\circ $, $90^\circ $, $180^\circ $, $270^\circ $, $360^\circ $ respectively for each trigonometric term such as $\sin $, $\cos $, $\tan $, $\cot $, $\sec $, $\cos ec$, etc. We should take care of the calculations so as to be sure of our final answer. In the given question we added two $\sin $ functions. Similarly we can subtract two $\sin $ functions using formula of subtraction of two $\sin $ functions. Also, subtract or add two $\cos $ functions by using formulae. Such as,
$\sin A - \sin B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)$
$\cos A - \cos B = - 2\sin \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)$
$\cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)$
We use them according to the given problem.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

