
Solve the equation\[{{\sin }^{3}}x\cos 3x+{{\cos }^{3}}x\sin 3x+\dfrac{3}{8}=0\].
Answer
597.6k+ views
Hint: Get the values of\[{{\sin }^{3}}x\] and \[{{\cos }^{3}}x\]from the trigonometric identities of \[\sin 3x\]and\[\cos 3x\]. Identities are given as \[\sin 3x=3\sin x-4{{\sin }^{3}}x,\text{ }\cos 3x=4{{\cos }^{3}}x-3\cos x\]
Simplify it further and again use trigonometric identity of \[\sin \left( A+B \right)=\sin A\cos B+\cos A\sin B.\]General solution of equation \[\sin x=\sin y,\]is given as\[x=n\pi \pm \left( -1 \right)\], where\[n\in z\].
Complete step-by-step answer:
Given expression in the problem is
\[{{\sin }^{3}}x\cos 3x+{{\cos }^{3}}x\sin 3x+\dfrac{3}{8}=0...........(1)\]
We know the algebraic identities of\[\sin 3x\] and\[\cos 3x\]are given as
\[\sin 3x=3\sin x-4{{\sin }^{3}}x\]
\[\cos 3x=4{{\cos }^{3}}x-3\cos x\]
Hence, we can get the value of\[{{\sin }^{3}}x\] and \[{{\cos }^{3}}x\]from both the expression as
\[{{\sin }^{3}}x=\dfrac{3\sin x-\sin 3x}{4}\]\[\to (2)\]
\[{{\cos }^{3}}x=\dfrac{3\cos x+\cos 3x}{4}\]\[\to (3)\]
Now, put the value of\[{{\sin }^{3}}x\] and \[{{\cos }^{3}}x\]from the equation (2) and (3) to the equation (1). So, we get
\[\begin{align}
& \left( \dfrac{3\sin x-\sin 3x}{4} \right)\cos 3x+\left( \dfrac{3\cos x+\cos 3x}{4} \right)\sin 3x+\dfrac{3}{8}=0 \\
& \dfrac{1}{4}\left[ 3\sin x\cos 3x-\sin 3x\cos 3x+3\cos x\sin 3x+\cos 3x\sin 3x \right]+\dfrac{3}{8}=0 \\
\end{align}\]
\[\begin{align}
& \dfrac{3}{4}\left[ \sin x\cos 3x+\cos x\sin 3x \right]=-\dfrac{3}{8} \\
& \Rightarrow \left[ \sin x\cos 3x+\cos x\sin 3x \right]=-\dfrac{1}{2}\to (4) \\
\end{align}\]
Now, we know that the trigonometric identity of\[\sin \left( A+B \right)\]is given as
\[\sin \left( A+B \right)=\sin A\cos B+\cos A\sin B\to (5)\]
Hence, we can simplify equation (4) further, with the help of equation (5) as
\[\begin{align}
& \sin \left( x+3x \right)=-\dfrac{1}{2} \\
& \sin 4x=-\dfrac{1}{2}\to (6) \\
\end{align}\]
We know\[\sin \theta \] gives the value \[\dfrac{1}{2}\] at \[\dfrac{\pi }{6}\] and we know the relation \[\sin \left( -\theta \right)=-\sin \theta \] as well. So, put \[\theta =\dfrac{\pi }{6}\] to the expression \[\sin \left( -\theta \right)=-\sin \theta \], we get
\[\sin \left( -\dfrac{\pi }{6} \right)=-\sin \left( \dfrac{\pi }{6} \right)=-\dfrac{1}{2}\]
Hence, the principal value of \[4x\]from the equation (6) will be \[-\dfrac{\pi }{6}\]. Now, we can write the equation (6) as
\[\sin 4x=\sin \left( -\dfrac{\pi }{6} \right)\]
Now, we know the general solution of \[\sin x=\sin y\] is given as \[x=n\pi +{{\left( -1 \right)}^{n}}y;n\in z\].
So, we get general solution as
\[\begin{align}
& 4x=n\pi +{{\left( -1 \right)}^{n}}\left( -\dfrac{\pi }{6} \right) \\
& 4x=n\pi -{{\left( -1 \right)}^{n}}\dfrac{\pi }{6}\text{;}n\in z. \\
\end{align}\]
Now, divide the whole equation by ‘4’,
\[x=\dfrac{n\pi }{4}-{{\left( -1 \right)}^{n}}\dfrac{\pi }{24}\]
Note: Another approach for this question would be that we could put values of \[\sin 3x\] and\[\cos 3x\] by their identities. Hence, may get a 6-degree equation related to the given equation. Do not confuse with the formula of \[\sin 3x=3\sin x-4{{\sin }^{3}}x\]
\[\cos 3x=4{{\cos }^{3}}x-3\cos x\]
Do not confuse with the other general equation of\[\sin x=\sin y\]. We need to use principle value for the c. One may connect the whole relation to \[\cos \theta \]as well.
Simplify it further and again use trigonometric identity of \[\sin \left( A+B \right)=\sin A\cos B+\cos A\sin B.\]General solution of equation \[\sin x=\sin y,\]is given as\[x=n\pi \pm \left( -1 \right)\], where\[n\in z\].
Complete step-by-step answer:
Given expression in the problem is
\[{{\sin }^{3}}x\cos 3x+{{\cos }^{3}}x\sin 3x+\dfrac{3}{8}=0...........(1)\]
We know the algebraic identities of\[\sin 3x\] and\[\cos 3x\]are given as
\[\sin 3x=3\sin x-4{{\sin }^{3}}x\]
\[\cos 3x=4{{\cos }^{3}}x-3\cos x\]
Hence, we can get the value of\[{{\sin }^{3}}x\] and \[{{\cos }^{3}}x\]from both the expression as
\[{{\sin }^{3}}x=\dfrac{3\sin x-\sin 3x}{4}\]\[\to (2)\]
\[{{\cos }^{3}}x=\dfrac{3\cos x+\cos 3x}{4}\]\[\to (3)\]
Now, put the value of\[{{\sin }^{3}}x\] and \[{{\cos }^{3}}x\]from the equation (2) and (3) to the equation (1). So, we get
\[\begin{align}
& \left( \dfrac{3\sin x-\sin 3x}{4} \right)\cos 3x+\left( \dfrac{3\cos x+\cos 3x}{4} \right)\sin 3x+\dfrac{3}{8}=0 \\
& \dfrac{1}{4}\left[ 3\sin x\cos 3x-\sin 3x\cos 3x+3\cos x\sin 3x+\cos 3x\sin 3x \right]+\dfrac{3}{8}=0 \\
\end{align}\]
\[\begin{align}
& \dfrac{3}{4}\left[ \sin x\cos 3x+\cos x\sin 3x \right]=-\dfrac{3}{8} \\
& \Rightarrow \left[ \sin x\cos 3x+\cos x\sin 3x \right]=-\dfrac{1}{2}\to (4) \\
\end{align}\]
Now, we know that the trigonometric identity of\[\sin \left( A+B \right)\]is given as
\[\sin \left( A+B \right)=\sin A\cos B+\cos A\sin B\to (5)\]
Hence, we can simplify equation (4) further, with the help of equation (5) as
\[\begin{align}
& \sin \left( x+3x \right)=-\dfrac{1}{2} \\
& \sin 4x=-\dfrac{1}{2}\to (6) \\
\end{align}\]
We know\[\sin \theta \] gives the value \[\dfrac{1}{2}\] at \[\dfrac{\pi }{6}\] and we know the relation \[\sin \left( -\theta \right)=-\sin \theta \] as well. So, put \[\theta =\dfrac{\pi }{6}\] to the expression \[\sin \left( -\theta \right)=-\sin \theta \], we get
\[\sin \left( -\dfrac{\pi }{6} \right)=-\sin \left( \dfrac{\pi }{6} \right)=-\dfrac{1}{2}\]
Hence, the principal value of \[4x\]from the equation (6) will be \[-\dfrac{\pi }{6}\]. Now, we can write the equation (6) as
\[\sin 4x=\sin \left( -\dfrac{\pi }{6} \right)\]
Now, we know the general solution of \[\sin x=\sin y\] is given as \[x=n\pi +{{\left( -1 \right)}^{n}}y;n\in z\].
So, we get general solution as
\[\begin{align}
& 4x=n\pi +{{\left( -1 \right)}^{n}}\left( -\dfrac{\pi }{6} \right) \\
& 4x=n\pi -{{\left( -1 \right)}^{n}}\dfrac{\pi }{6}\text{;}n\in z. \\
\end{align}\]
Now, divide the whole equation by ‘4’,
\[x=\dfrac{n\pi }{4}-{{\left( -1 \right)}^{n}}\dfrac{\pi }{24}\]
Note: Another approach for this question would be that we could put values of \[\sin 3x\] and\[\cos 3x\] by their identities. Hence, may get a 6-degree equation related to the given equation. Do not confuse with the formula of \[\sin 3x=3\sin x-4{{\sin }^{3}}x\]
\[\cos 3x=4{{\cos }^{3}}x-3\cos x\]
Do not confuse with the other general equation of\[\sin x=\sin y\]. We need to use principle value for the c. One may connect the whole relation to \[\cos \theta \]as well.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

