
Solve the equations using cross multiplication method:
$x-3y=8$ and $x-9y=14$
a) $x=-5\text{ and }y=1$
b) $x=5\text{ and }y=1$
c) $x=5\text{ and }y=-1$
d) $x=-5\text{ and }y=-1$
Answer
569.1k+ views
Hint: We get the values for ${{a}_{1}},{{b}_{1}},{{c}_{1}},{{a}_{2}},{{b}_{2}},{{c}_{2}}$ from the given two equations ${{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}=0$ and ${{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}=0$. We check whether ${{b}_{2}}{{a}_{1}}-{{b}_{1}}{{a}_{2}}\ne 0$ . Then by cross multiplication method, we find $x$ and $y$ using the formula
$\dfrac{x}{{{b}_{1}}{{c}_{2}}-{{b}_{2}}{{c}_{1}}}=\dfrac{y}{{{c}_{1}}{{a}_{2}}-{{c}_{2}}{{a}_{1}}}=\dfrac{1}{{{b}_{2}}{{a}_{1}}-{{b}_{1}}{{a}_{2}}}$ and hence \[x=\dfrac{{{b}_{1}}{{c}_{2}}-{{b}_{2}}{{c}_{1}}}{{{b}_{2}}{{a}_{1}}-{{b}_{1}}{{a}_{2}}}\] and $y=\dfrac{{{c}_{1}}{{a}_{2}}-{{c}_{2}}{{a}_{1}}}{{{b}_{2}}{{a}_{1}}-{{b}_{1}}{{a}_{2}}}$
Complete step-by-step solution:
Given equations are $x-3y=8$ and $x-9y=14$ . Now bringing all terms to the left hand side of the equations, we get $x-3y-8=0$ and $x-9y-14=0$ . By comparing with ${{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}=0$ and ${{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}=0$, we get ${{a}_{1}}=1$, ${{b}_{1}}=-3$, ${{c}_{1}}=-8$, ${{a}_{2}}=1$,${{b}_{2}}=-9$ and ${{c}_{2}}=-14$.
Here ${{b}_{2}}{{a}_{1}}-{{b}_{1}}{{a}_{2}}=(-9)(1)-(-3)(1)$
$\Rightarrow {{b}_{2}}{{a}_{1}}-{{b}_{1}}{{a}_{2}}=-9+3$
$\Rightarrow {{b}_{2}}{{a}_{1}}-{{b}_{1}}{{a}_{2}}=-6$ and hence ${{b}_{2}}{{a}_{1}}-{{b}_{1}}{{a}_{2}}\ne 0$
By the cross multiplication method,
$\Rightarrow \dfrac{x}{{{b}_{1}}{{c}_{2}}-{{b}_{2}}{{c}_{1}}}=\dfrac{y}{{{c}_{1}}{{a}_{2}}-{{c}_{2}}{{a}_{1}}}=\dfrac{1}{{{b}_{2}}{{a}_{1}}-{{b}_{1}}{{a}_{2}}}$
Now applying the above formula for the values of ${{a}_{1}},{{b}_{1}},{{c}_{1}},{{a}_{2}},{{b}_{2}},{{c}_{2}}$ we get $\Rightarrow \dfrac{x}{(-3)(-14)-(-9)(-8)}=\dfrac{y}{(-8)(1)-(-14)(1)}=\dfrac{1}{(-9)(1)-(-3)(1)}$
On multiplying the values in each of the denominator, we get
$\Rightarrow \dfrac{x}{42-72}=\dfrac{y}{-8+14}=\dfrac{1}{-9+3}$
Now adding the terms in each denominator, we get
$\Rightarrow \dfrac{x}{-30}=\dfrac{y}{6}=\dfrac{1}{-6}.............(i)$
Now to find x, we equate the “x” part with the constant term from the above expression (i).
$\Rightarrow \dfrac{x}{-30}=\dfrac{1}{-6}$
By using the formula \[x=\dfrac{{{b}_{1}}{{c}_{2}}-{{b}_{2}}{{c}_{1}}}{{{b}_{2}}{{a}_{1}}-{{b}_{1}}{{a}_{2}}}\] , we get $x=\dfrac{-30}{-6}$ , which on simplification we get $x=5$
Now, to find y, we equate the “y” part with the constant term from the above expression (i).
$\Rightarrow \dfrac{y}{6}=\dfrac{1}{-6}$
By using the formula $y=\dfrac{{{c}_{1}}{{a}_{2}}-{{c}_{2}}{{a}_{1}}}{{{b}_{2}}{{a}_{1}}-{{b}_{1}}{{a}_{2}}}$, we get $y=\dfrac{6}{-6}$ , which on simplification we get $y=-1$
Hence the correct answer is c) $x=5\text{ and }y=-1$
Note: We can verify the correctness of the answer by substituting the values of x and y in the given two equations.
If $x=5\text{ and }y=-1$ , the first equation becomes $x-3y=5-(3)(-1)=8$ and the second equation becomes $x-9y=5-(9)(-1)=14$
Thus our obtained answer is the correct answer.
$\dfrac{x}{{{b}_{1}}{{c}_{2}}-{{b}_{2}}{{c}_{1}}}=\dfrac{y}{{{c}_{1}}{{a}_{2}}-{{c}_{2}}{{a}_{1}}}=\dfrac{1}{{{b}_{2}}{{a}_{1}}-{{b}_{1}}{{a}_{2}}}$ and hence \[x=\dfrac{{{b}_{1}}{{c}_{2}}-{{b}_{2}}{{c}_{1}}}{{{b}_{2}}{{a}_{1}}-{{b}_{1}}{{a}_{2}}}\] and $y=\dfrac{{{c}_{1}}{{a}_{2}}-{{c}_{2}}{{a}_{1}}}{{{b}_{2}}{{a}_{1}}-{{b}_{1}}{{a}_{2}}}$
Complete step-by-step solution:
Given equations are $x-3y=8$ and $x-9y=14$ . Now bringing all terms to the left hand side of the equations, we get $x-3y-8=0$ and $x-9y-14=0$ . By comparing with ${{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}=0$ and ${{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}=0$, we get ${{a}_{1}}=1$, ${{b}_{1}}=-3$, ${{c}_{1}}=-8$, ${{a}_{2}}=1$,${{b}_{2}}=-9$ and ${{c}_{2}}=-14$.
Here ${{b}_{2}}{{a}_{1}}-{{b}_{1}}{{a}_{2}}=(-9)(1)-(-3)(1)$
$\Rightarrow {{b}_{2}}{{a}_{1}}-{{b}_{1}}{{a}_{2}}=-9+3$
$\Rightarrow {{b}_{2}}{{a}_{1}}-{{b}_{1}}{{a}_{2}}=-6$ and hence ${{b}_{2}}{{a}_{1}}-{{b}_{1}}{{a}_{2}}\ne 0$
By the cross multiplication method,
$\Rightarrow \dfrac{x}{{{b}_{1}}{{c}_{2}}-{{b}_{2}}{{c}_{1}}}=\dfrac{y}{{{c}_{1}}{{a}_{2}}-{{c}_{2}}{{a}_{1}}}=\dfrac{1}{{{b}_{2}}{{a}_{1}}-{{b}_{1}}{{a}_{2}}}$
Now applying the above formula for the values of ${{a}_{1}},{{b}_{1}},{{c}_{1}},{{a}_{2}},{{b}_{2}},{{c}_{2}}$ we get $\Rightarrow \dfrac{x}{(-3)(-14)-(-9)(-8)}=\dfrac{y}{(-8)(1)-(-14)(1)}=\dfrac{1}{(-9)(1)-(-3)(1)}$
On multiplying the values in each of the denominator, we get
$\Rightarrow \dfrac{x}{42-72}=\dfrac{y}{-8+14}=\dfrac{1}{-9+3}$
Now adding the terms in each denominator, we get
$\Rightarrow \dfrac{x}{-30}=\dfrac{y}{6}=\dfrac{1}{-6}.............(i)$
Now to find x, we equate the “x” part with the constant term from the above expression (i).
$\Rightarrow \dfrac{x}{-30}=\dfrac{1}{-6}$
By using the formula \[x=\dfrac{{{b}_{1}}{{c}_{2}}-{{b}_{2}}{{c}_{1}}}{{{b}_{2}}{{a}_{1}}-{{b}_{1}}{{a}_{2}}}\] , we get $x=\dfrac{-30}{-6}$ , which on simplification we get $x=5$
Now, to find y, we equate the “y” part with the constant term from the above expression (i).
$\Rightarrow \dfrac{y}{6}=\dfrac{1}{-6}$
By using the formula $y=\dfrac{{{c}_{1}}{{a}_{2}}-{{c}_{2}}{{a}_{1}}}{{{b}_{2}}{{a}_{1}}-{{b}_{1}}{{a}_{2}}}$, we get $y=\dfrac{6}{-6}$ , which on simplification we get $y=-1$
Hence the correct answer is c) $x=5\text{ and }y=-1$
Note: We can verify the correctness of the answer by substituting the values of x and y in the given two equations.
If $x=5\text{ and }y=-1$ , the first equation becomes $x-3y=5-(3)(-1)=8$ and the second equation becomes $x-9y=5-(9)(-1)=14$
Thus our obtained answer is the correct answer.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

