
Solve the equation \[{{z}^{7}}+1=0\] then
(a) \[\cos \dfrac{\pi }{7}\cos \dfrac{3\pi }{7}\cos \dfrac{5\pi }{7}=-\dfrac{1}{8}\]
(b) \[\cos \dfrac{\pi }{14}\cos \dfrac{3\pi }{14}\cos \dfrac{5\pi }{14}=\dfrac{\sqrt{\pi }}{8}\]
(c) \[\sin \dfrac{\pi }{14}\sin \dfrac{3\pi }{14}\sin \dfrac{5\pi }{14}=\dfrac{1}{8}\]
(d) \[{{\tan }^{2}}\dfrac{\pi }{14}+{{\tan }^{2}}\dfrac{3\pi }{14}+{{\tan }^{2}}\dfrac{5\pi }{14}=5\]
Answer
524.4k+ views
Hint: For solving this question you should know about the solving equations and then use these values for making new Functions. In this question first we will find the exponential values and then by using the values of the difference of z will calculate the trigonometric functions.
Complete step-by-step solution:
According to the question we have to solve the equation \[{{z}^{7}}+1=0\] and then we have to deduce trigonometric equations which are given.
So, if we take our question then the equation is \[{{z}^{7}}+1=0\].
So, we can write it as \[{{z}^{7}}=-1\Rightarrow z={{\left( -1 \right)}^{{1}/{7}\;}}\]
\[\begin{align}
& \Rightarrow {{z}^{7}}=\left( -1 \right){{e}^{\arg \left( -1 \right)i}} \\
& \Rightarrow {{z}^{7}}=1\cdot {{e}^{\pi i}} \\
& \Rightarrow {{z}^{7}}={{e}^{\pi i}} \\
& \Rightarrow z={{\left( {{e}^{\left( \pi +2\pi k \right)i}} \right)}^{\dfrac{1}{7}}} \\
& \Rightarrow z={{e}^{\dfrac{1}{7}\left( \pi +2\pi k \right)i}} \\
\end{align}\]
So, we can write all the values of z till \[{{7}^{th}}\] power as
\[\begin{align}
& {{z}_{0}}={{e}^{\dfrac{1}{7}\left( \pi +2\pi \times 0 \right)i}}={{e}^{\dfrac{i\pi }{7}}} \\
& {{z}_{1}}={{e}^{\dfrac{1}{7}\left( \pi +2\pi \times 1 \right)i}}={{e}^{\dfrac{3i\pi }{7}}} \\
& {{z}_{2}}={{e}^{\dfrac{1}{7}\left( \pi +2\pi \times 2 \right)i}}={{e}^{\dfrac{5i\pi }{7}}} \\
& {{z}_{3}}={{e}^{\dfrac{1}{7}\left( \pi +2\pi \times 3 \right)i}}={{e}^{\dfrac{7i\pi }{7}}} \\
& {{z}_{4}}={{e}^{\dfrac{1}{7}\left( \pi +2\pi \times 4 \right)i}}={{e}^{\dfrac{9i\pi }{7}}} \\
& {{z}_{5}}={{e}^{\dfrac{1}{7}\left( \pi +2\pi \times 5 \right)i}}={{e}^{\dfrac{11i\pi }{7}}} \\
& {{z}_{6}}={{e}^{\dfrac{1}{7}\left( \pi +2\pi \times 6 \right)i}}={{e}^{\dfrac{13i\pi }{7}}} \\
\end{align}\]
Therefore, we can further write a few terms as
\[{{z}_{0}}.{{z}_{1}}={{e}^{\dfrac{i\pi }{7}}}.{{e}^{\dfrac{i3\pi }{7}}}={{e}^{i\left( \dfrac{3\pi }{7}+\dfrac{\pi }{7} \right)}}={{e}^{\dfrac{i4\pi }{7}}}-\left( 1 \right)\]
\[{{z}_{0}}-{{z}_{6}}={{e}^{\dfrac{i\pi }{7}}}-{{e}^{\dfrac{i3\pi }{7}}}=2\sin \dfrac{\pi }{7}-\left( 2 \right)\]
\[{{z}_{1}}-{{z}_{5}}=2\sin \dfrac{3\pi }{7}-\left( 3 \right)\]
And \[{{z}_{2}}-{{z}_{4}}=2\sin \dfrac{5\pi }{7}-\left( 4 \right)\]
Now, if we multiply to the equations (2), (3), and (4) then, we get the expressions as
\[\begin{align}
& \left( {{z}_{0}}-{{z}_{6}} \right)\left( {{z}_{1}}-{{z}_{5}} \right)\left( {{z}_{2}}-{{z}_{4}} \right)=8\sin \dfrac{\pi }{7}\sin \dfrac{3\pi }{7}\sin \dfrac{5\pi }{7} \\
& \left( {{z}_{0}}{{z}_{1}}-{{z}_{0}}{{z}_{5}}-{{z}_{6}}{{z}_{1}}+{{z}_{6}}{{z}_{5}} \right)\left( {{z}_{2}}-{{z}_{4}} \right)=8\sin \dfrac{\pi }{7}\sin \dfrac{3\pi }{7}\sin \dfrac{5\pi }{7} \\
\end{align}\]
Now, if we solve this then it will be equal to -1
\[\begin{align}
& \Rightarrow -1=8\sin \dfrac{\pi }{7}\sin \dfrac{3\pi }{7}\sin \dfrac{5\pi }{7} \\
& \Rightarrow \sin \dfrac{\pi }{7}\sin \dfrac{3\pi }{7}\sin \dfrac{5\pi }{7}=\dfrac{-1}{8} \\
\end{align}\]
Now, we also know that
\[{{z}_{0}}+{{z}_{6}}={{e}^{i\dfrac{\pi }{7}}}+{{e}^{-i\dfrac{\pi }{7}}}=2\cos \dfrac{\pi }{7}\]
And similarly, we can say that \[{{z}_{1}}+{{z}_{5}}=2\cos \dfrac{3\pi }{7}\]
\[{{z}_{2}}+{{z}_{4}}=2\cos \dfrac{5\pi }{7}\]
According to the question, we know that \[{{z}^{7}}=-1\]
\[{{z}^{7}}=\cos \pi +i\sin \pi \]
And by the concept of complex numbers, we can write
\[\begin{align}
& \Rightarrow {{z}^{7}}=\cos \left( 4n+2 \right)\pi +i\sin \left( 4n+2 \right)\pi \\
& \Rightarrow z={{\left[ \cos \left( 4n+2 \right)\pi +i\sin \left( 4n+2 \right)\pi \right]}^{\dfrac{1}{7}}} \\
& \Rightarrow z=\left[ \cos \left( \dfrac{4n+2}{7} \right)\pi +i\sin \left( 4n+2 \right)\dfrac{\pi }{7} \right] \\
\end{align}\]
Or we can solve it as:
\[\begin{align}
& \cos \dfrac{\pi }{7}\cos \dfrac{3\pi }{7}\cos \dfrac{5\pi }{7} \\
& =\left( -\cos \dfrac{3\pi }{7} \right)\left( -\cos \dfrac{4\pi }{7} \right)\left( -\cos \dfrac{2\pi }{7} \right) \\
& =-\cos \dfrac{2\pi }{7}.\cos \dfrac{4\pi }{7}.\cos \dfrac{8\pi }{7} \\
\end{align}\]
\[={-2\sin \dfrac{2\pi }{7}\cos \dfrac{2\pi }{7}\cos \dfrac{4\pi }{7}}/{\left( 2\sin \left( 2\pi /7 \right) \right)}\;\]
\[\begin{align}
& =\dfrac{-2\times \sin {4\pi }/{7}\;.\cos {4\pi }/{7}\;\cos {8\pi }/{7}\;}{2\times 2\sin {2\pi }/{7}\;} \\
& =\dfrac{-2\times \sin {3\pi }/{7}\;\cos {8\pi }/{7}\;}{2\times 4\sin {2\pi }/{7}\;} \\
& =\dfrac{-\sin {16\pi }/{7}\;}{8\sin {2\pi }/{7}\;}=-\dfrac{1}{8} \\
\end{align}\]
So, option (a) is the correct option.
Note: For solving this question you should be careful for finding the value of \[{{z}_{n}}\]. And then all \[{{z}_{n}}\] values will add, subtract, multiply with each other and these will provide us the exponential values to trigonometric values. And then solve this very much carefully.
Complete step-by-step solution:
According to the question we have to solve the equation \[{{z}^{7}}+1=0\] and then we have to deduce trigonometric equations which are given.
So, if we take our question then the equation is \[{{z}^{7}}+1=0\].
So, we can write it as \[{{z}^{7}}=-1\Rightarrow z={{\left( -1 \right)}^{{1}/{7}\;}}\]
\[\begin{align}
& \Rightarrow {{z}^{7}}=\left( -1 \right){{e}^{\arg \left( -1 \right)i}} \\
& \Rightarrow {{z}^{7}}=1\cdot {{e}^{\pi i}} \\
& \Rightarrow {{z}^{7}}={{e}^{\pi i}} \\
& \Rightarrow z={{\left( {{e}^{\left( \pi +2\pi k \right)i}} \right)}^{\dfrac{1}{7}}} \\
& \Rightarrow z={{e}^{\dfrac{1}{7}\left( \pi +2\pi k \right)i}} \\
\end{align}\]
So, we can write all the values of z till \[{{7}^{th}}\] power as
\[\begin{align}
& {{z}_{0}}={{e}^{\dfrac{1}{7}\left( \pi +2\pi \times 0 \right)i}}={{e}^{\dfrac{i\pi }{7}}} \\
& {{z}_{1}}={{e}^{\dfrac{1}{7}\left( \pi +2\pi \times 1 \right)i}}={{e}^{\dfrac{3i\pi }{7}}} \\
& {{z}_{2}}={{e}^{\dfrac{1}{7}\left( \pi +2\pi \times 2 \right)i}}={{e}^{\dfrac{5i\pi }{7}}} \\
& {{z}_{3}}={{e}^{\dfrac{1}{7}\left( \pi +2\pi \times 3 \right)i}}={{e}^{\dfrac{7i\pi }{7}}} \\
& {{z}_{4}}={{e}^{\dfrac{1}{7}\left( \pi +2\pi \times 4 \right)i}}={{e}^{\dfrac{9i\pi }{7}}} \\
& {{z}_{5}}={{e}^{\dfrac{1}{7}\left( \pi +2\pi \times 5 \right)i}}={{e}^{\dfrac{11i\pi }{7}}} \\
& {{z}_{6}}={{e}^{\dfrac{1}{7}\left( \pi +2\pi \times 6 \right)i}}={{e}^{\dfrac{13i\pi }{7}}} \\
\end{align}\]
Therefore, we can further write a few terms as
\[{{z}_{0}}.{{z}_{1}}={{e}^{\dfrac{i\pi }{7}}}.{{e}^{\dfrac{i3\pi }{7}}}={{e}^{i\left( \dfrac{3\pi }{7}+\dfrac{\pi }{7} \right)}}={{e}^{\dfrac{i4\pi }{7}}}-\left( 1 \right)\]
\[{{z}_{0}}-{{z}_{6}}={{e}^{\dfrac{i\pi }{7}}}-{{e}^{\dfrac{i3\pi }{7}}}=2\sin \dfrac{\pi }{7}-\left( 2 \right)\]
\[{{z}_{1}}-{{z}_{5}}=2\sin \dfrac{3\pi }{7}-\left( 3 \right)\]
And \[{{z}_{2}}-{{z}_{4}}=2\sin \dfrac{5\pi }{7}-\left( 4 \right)\]
Now, if we multiply to the equations (2), (3), and (4) then, we get the expressions as
\[\begin{align}
& \left( {{z}_{0}}-{{z}_{6}} \right)\left( {{z}_{1}}-{{z}_{5}} \right)\left( {{z}_{2}}-{{z}_{4}} \right)=8\sin \dfrac{\pi }{7}\sin \dfrac{3\pi }{7}\sin \dfrac{5\pi }{7} \\
& \left( {{z}_{0}}{{z}_{1}}-{{z}_{0}}{{z}_{5}}-{{z}_{6}}{{z}_{1}}+{{z}_{6}}{{z}_{5}} \right)\left( {{z}_{2}}-{{z}_{4}} \right)=8\sin \dfrac{\pi }{7}\sin \dfrac{3\pi }{7}\sin \dfrac{5\pi }{7} \\
\end{align}\]
Now, if we solve this then it will be equal to -1
\[\begin{align}
& \Rightarrow -1=8\sin \dfrac{\pi }{7}\sin \dfrac{3\pi }{7}\sin \dfrac{5\pi }{7} \\
& \Rightarrow \sin \dfrac{\pi }{7}\sin \dfrac{3\pi }{7}\sin \dfrac{5\pi }{7}=\dfrac{-1}{8} \\
\end{align}\]
Now, we also know that
\[{{z}_{0}}+{{z}_{6}}={{e}^{i\dfrac{\pi }{7}}}+{{e}^{-i\dfrac{\pi }{7}}}=2\cos \dfrac{\pi }{7}\]
And similarly, we can say that \[{{z}_{1}}+{{z}_{5}}=2\cos \dfrac{3\pi }{7}\]
\[{{z}_{2}}+{{z}_{4}}=2\cos \dfrac{5\pi }{7}\]
According to the question, we know that \[{{z}^{7}}=-1\]
\[{{z}^{7}}=\cos \pi +i\sin \pi \]
And by the concept of complex numbers, we can write
\[\begin{align}
& \Rightarrow {{z}^{7}}=\cos \left( 4n+2 \right)\pi +i\sin \left( 4n+2 \right)\pi \\
& \Rightarrow z={{\left[ \cos \left( 4n+2 \right)\pi +i\sin \left( 4n+2 \right)\pi \right]}^{\dfrac{1}{7}}} \\
& \Rightarrow z=\left[ \cos \left( \dfrac{4n+2}{7} \right)\pi +i\sin \left( 4n+2 \right)\dfrac{\pi }{7} \right] \\
\end{align}\]
Or we can solve it as:
\[\begin{align}
& \cos \dfrac{\pi }{7}\cos \dfrac{3\pi }{7}\cos \dfrac{5\pi }{7} \\
& =\left( -\cos \dfrac{3\pi }{7} \right)\left( -\cos \dfrac{4\pi }{7} \right)\left( -\cos \dfrac{2\pi }{7} \right) \\
& =-\cos \dfrac{2\pi }{7}.\cos \dfrac{4\pi }{7}.\cos \dfrac{8\pi }{7} \\
\end{align}\]
\[={-2\sin \dfrac{2\pi }{7}\cos \dfrac{2\pi }{7}\cos \dfrac{4\pi }{7}}/{\left( 2\sin \left( 2\pi /7 \right) \right)}\;\]
\[\begin{align}
& =\dfrac{-2\times \sin {4\pi }/{7}\;.\cos {4\pi }/{7}\;\cos {8\pi }/{7}\;}{2\times 2\sin {2\pi }/{7}\;} \\
& =\dfrac{-2\times \sin {3\pi }/{7}\;\cos {8\pi }/{7}\;}{2\times 4\sin {2\pi }/{7}\;} \\
& =\dfrac{-\sin {16\pi }/{7}\;}{8\sin {2\pi }/{7}\;}=-\dfrac{1}{8} \\
\end{align}\]
So, option (a) is the correct option.
Note: For solving this question you should be careful for finding the value of \[{{z}_{n}}\]. And then all \[{{z}_{n}}\] values will add, subtract, multiply with each other and these will provide us the exponential values to trigonometric values. And then solve this very much carefully.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a labelled diagram of the human heart and label class 11 biology CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

