
Solve the equation \[{{z}^{7}}+1=0\] then
(a) \[\cos \dfrac{\pi }{7}\cos \dfrac{3\pi }{7}\cos \dfrac{5\pi }{7}=-\dfrac{1}{8}\]
(b) \[\cos \dfrac{\pi }{14}\cos \dfrac{3\pi }{14}\cos \dfrac{5\pi }{14}=\dfrac{\sqrt{\pi }}{8}\]
(c) \[\sin \dfrac{\pi }{14}\sin \dfrac{3\pi }{14}\sin \dfrac{5\pi }{14}=\dfrac{1}{8}\]
(d) \[{{\tan }^{2}}\dfrac{\pi }{14}+{{\tan }^{2}}\dfrac{3\pi }{14}+{{\tan }^{2}}\dfrac{5\pi }{14}=5\]
Answer
511.2k+ views
Hint: For solving this question you should know about the solving equations and then use these values for making new Functions. In this question first we will find the exponential values and then by using the values of the difference of z will calculate the trigonometric functions.
Complete step-by-step solution:
According to the question we have to solve the equation \[{{z}^{7}}+1=0\] and then we have to deduce trigonometric equations which are given.
So, if we take our question then the equation is \[{{z}^{7}}+1=0\].
So, we can write it as \[{{z}^{7}}=-1\Rightarrow z={{\left( -1 \right)}^{{1}/{7}\;}}\]
\[\begin{align}
& \Rightarrow {{z}^{7}}=\left( -1 \right){{e}^{\arg \left( -1 \right)i}} \\
& \Rightarrow {{z}^{7}}=1\cdot {{e}^{\pi i}} \\
& \Rightarrow {{z}^{7}}={{e}^{\pi i}} \\
& \Rightarrow z={{\left( {{e}^{\left( \pi +2\pi k \right)i}} \right)}^{\dfrac{1}{7}}} \\
& \Rightarrow z={{e}^{\dfrac{1}{7}\left( \pi +2\pi k \right)i}} \\
\end{align}\]
So, we can write all the values of z till \[{{7}^{th}}\] power as
\[\begin{align}
& {{z}_{0}}={{e}^{\dfrac{1}{7}\left( \pi +2\pi \times 0 \right)i}}={{e}^{\dfrac{i\pi }{7}}} \\
& {{z}_{1}}={{e}^{\dfrac{1}{7}\left( \pi +2\pi \times 1 \right)i}}={{e}^{\dfrac{3i\pi }{7}}} \\
& {{z}_{2}}={{e}^{\dfrac{1}{7}\left( \pi +2\pi \times 2 \right)i}}={{e}^{\dfrac{5i\pi }{7}}} \\
& {{z}_{3}}={{e}^{\dfrac{1}{7}\left( \pi +2\pi \times 3 \right)i}}={{e}^{\dfrac{7i\pi }{7}}} \\
& {{z}_{4}}={{e}^{\dfrac{1}{7}\left( \pi +2\pi \times 4 \right)i}}={{e}^{\dfrac{9i\pi }{7}}} \\
& {{z}_{5}}={{e}^{\dfrac{1}{7}\left( \pi +2\pi \times 5 \right)i}}={{e}^{\dfrac{11i\pi }{7}}} \\
& {{z}_{6}}={{e}^{\dfrac{1}{7}\left( \pi +2\pi \times 6 \right)i}}={{e}^{\dfrac{13i\pi }{7}}} \\
\end{align}\]
Therefore, we can further write a few terms as
\[{{z}_{0}}.{{z}_{1}}={{e}^{\dfrac{i\pi }{7}}}.{{e}^{\dfrac{i3\pi }{7}}}={{e}^{i\left( \dfrac{3\pi }{7}+\dfrac{\pi }{7} \right)}}={{e}^{\dfrac{i4\pi }{7}}}-\left( 1 \right)\]
\[{{z}_{0}}-{{z}_{6}}={{e}^{\dfrac{i\pi }{7}}}-{{e}^{\dfrac{i3\pi }{7}}}=2\sin \dfrac{\pi }{7}-\left( 2 \right)\]
\[{{z}_{1}}-{{z}_{5}}=2\sin \dfrac{3\pi }{7}-\left( 3 \right)\]
And \[{{z}_{2}}-{{z}_{4}}=2\sin \dfrac{5\pi }{7}-\left( 4 \right)\]
Now, if we multiply to the equations (2), (3), and (4) then, we get the expressions as
\[\begin{align}
& \left( {{z}_{0}}-{{z}_{6}} \right)\left( {{z}_{1}}-{{z}_{5}} \right)\left( {{z}_{2}}-{{z}_{4}} \right)=8\sin \dfrac{\pi }{7}\sin \dfrac{3\pi }{7}\sin \dfrac{5\pi }{7} \\
& \left( {{z}_{0}}{{z}_{1}}-{{z}_{0}}{{z}_{5}}-{{z}_{6}}{{z}_{1}}+{{z}_{6}}{{z}_{5}} \right)\left( {{z}_{2}}-{{z}_{4}} \right)=8\sin \dfrac{\pi }{7}\sin \dfrac{3\pi }{7}\sin \dfrac{5\pi }{7} \\
\end{align}\]
Now, if we solve this then it will be equal to -1
\[\begin{align}
& \Rightarrow -1=8\sin \dfrac{\pi }{7}\sin \dfrac{3\pi }{7}\sin \dfrac{5\pi }{7} \\
& \Rightarrow \sin \dfrac{\pi }{7}\sin \dfrac{3\pi }{7}\sin \dfrac{5\pi }{7}=\dfrac{-1}{8} \\
\end{align}\]
Now, we also know that
\[{{z}_{0}}+{{z}_{6}}={{e}^{i\dfrac{\pi }{7}}}+{{e}^{-i\dfrac{\pi }{7}}}=2\cos \dfrac{\pi }{7}\]
And similarly, we can say that \[{{z}_{1}}+{{z}_{5}}=2\cos \dfrac{3\pi }{7}\]
\[{{z}_{2}}+{{z}_{4}}=2\cos \dfrac{5\pi }{7}\]
According to the question, we know that \[{{z}^{7}}=-1\]
\[{{z}^{7}}=\cos \pi +i\sin \pi \]
And by the concept of complex numbers, we can write
\[\begin{align}
& \Rightarrow {{z}^{7}}=\cos \left( 4n+2 \right)\pi +i\sin \left( 4n+2 \right)\pi \\
& \Rightarrow z={{\left[ \cos \left( 4n+2 \right)\pi +i\sin \left( 4n+2 \right)\pi \right]}^{\dfrac{1}{7}}} \\
& \Rightarrow z=\left[ \cos \left( \dfrac{4n+2}{7} \right)\pi +i\sin \left( 4n+2 \right)\dfrac{\pi }{7} \right] \\
\end{align}\]
Or we can solve it as:
\[\begin{align}
& \cos \dfrac{\pi }{7}\cos \dfrac{3\pi }{7}\cos \dfrac{5\pi }{7} \\
& =\left( -\cos \dfrac{3\pi }{7} \right)\left( -\cos \dfrac{4\pi }{7} \right)\left( -\cos \dfrac{2\pi }{7} \right) \\
& =-\cos \dfrac{2\pi }{7}.\cos \dfrac{4\pi }{7}.\cos \dfrac{8\pi }{7} \\
\end{align}\]
\[={-2\sin \dfrac{2\pi }{7}\cos \dfrac{2\pi }{7}\cos \dfrac{4\pi }{7}}/{\left( 2\sin \left( 2\pi /7 \right) \right)}\;\]
\[\begin{align}
& =\dfrac{-2\times \sin {4\pi }/{7}\;.\cos {4\pi }/{7}\;\cos {8\pi }/{7}\;}{2\times 2\sin {2\pi }/{7}\;} \\
& =\dfrac{-2\times \sin {3\pi }/{7}\;\cos {8\pi }/{7}\;}{2\times 4\sin {2\pi }/{7}\;} \\
& =\dfrac{-\sin {16\pi }/{7}\;}{8\sin {2\pi }/{7}\;}=-\dfrac{1}{8} \\
\end{align}\]
So, option (a) is the correct option.
Note: For solving this question you should be careful for finding the value of \[{{z}_{n}}\]. And then all \[{{z}_{n}}\] values will add, subtract, multiply with each other and these will provide us the exponential values to trigonometric values. And then solve this very much carefully.
Complete step-by-step solution:
According to the question we have to solve the equation \[{{z}^{7}}+1=0\] and then we have to deduce trigonometric equations which are given.
So, if we take our question then the equation is \[{{z}^{7}}+1=0\].
So, we can write it as \[{{z}^{7}}=-1\Rightarrow z={{\left( -1 \right)}^{{1}/{7}\;}}\]
\[\begin{align}
& \Rightarrow {{z}^{7}}=\left( -1 \right){{e}^{\arg \left( -1 \right)i}} \\
& \Rightarrow {{z}^{7}}=1\cdot {{e}^{\pi i}} \\
& \Rightarrow {{z}^{7}}={{e}^{\pi i}} \\
& \Rightarrow z={{\left( {{e}^{\left( \pi +2\pi k \right)i}} \right)}^{\dfrac{1}{7}}} \\
& \Rightarrow z={{e}^{\dfrac{1}{7}\left( \pi +2\pi k \right)i}} \\
\end{align}\]
So, we can write all the values of z till \[{{7}^{th}}\] power as
\[\begin{align}
& {{z}_{0}}={{e}^{\dfrac{1}{7}\left( \pi +2\pi \times 0 \right)i}}={{e}^{\dfrac{i\pi }{7}}} \\
& {{z}_{1}}={{e}^{\dfrac{1}{7}\left( \pi +2\pi \times 1 \right)i}}={{e}^{\dfrac{3i\pi }{7}}} \\
& {{z}_{2}}={{e}^{\dfrac{1}{7}\left( \pi +2\pi \times 2 \right)i}}={{e}^{\dfrac{5i\pi }{7}}} \\
& {{z}_{3}}={{e}^{\dfrac{1}{7}\left( \pi +2\pi \times 3 \right)i}}={{e}^{\dfrac{7i\pi }{7}}} \\
& {{z}_{4}}={{e}^{\dfrac{1}{7}\left( \pi +2\pi \times 4 \right)i}}={{e}^{\dfrac{9i\pi }{7}}} \\
& {{z}_{5}}={{e}^{\dfrac{1}{7}\left( \pi +2\pi \times 5 \right)i}}={{e}^{\dfrac{11i\pi }{7}}} \\
& {{z}_{6}}={{e}^{\dfrac{1}{7}\left( \pi +2\pi \times 6 \right)i}}={{e}^{\dfrac{13i\pi }{7}}} \\
\end{align}\]
Therefore, we can further write a few terms as
\[{{z}_{0}}.{{z}_{1}}={{e}^{\dfrac{i\pi }{7}}}.{{e}^{\dfrac{i3\pi }{7}}}={{e}^{i\left( \dfrac{3\pi }{7}+\dfrac{\pi }{7} \right)}}={{e}^{\dfrac{i4\pi }{7}}}-\left( 1 \right)\]
\[{{z}_{0}}-{{z}_{6}}={{e}^{\dfrac{i\pi }{7}}}-{{e}^{\dfrac{i3\pi }{7}}}=2\sin \dfrac{\pi }{7}-\left( 2 \right)\]
\[{{z}_{1}}-{{z}_{5}}=2\sin \dfrac{3\pi }{7}-\left( 3 \right)\]
And \[{{z}_{2}}-{{z}_{4}}=2\sin \dfrac{5\pi }{7}-\left( 4 \right)\]
Now, if we multiply to the equations (2), (3), and (4) then, we get the expressions as
\[\begin{align}
& \left( {{z}_{0}}-{{z}_{6}} \right)\left( {{z}_{1}}-{{z}_{5}} \right)\left( {{z}_{2}}-{{z}_{4}} \right)=8\sin \dfrac{\pi }{7}\sin \dfrac{3\pi }{7}\sin \dfrac{5\pi }{7} \\
& \left( {{z}_{0}}{{z}_{1}}-{{z}_{0}}{{z}_{5}}-{{z}_{6}}{{z}_{1}}+{{z}_{6}}{{z}_{5}} \right)\left( {{z}_{2}}-{{z}_{4}} \right)=8\sin \dfrac{\pi }{7}\sin \dfrac{3\pi }{7}\sin \dfrac{5\pi }{7} \\
\end{align}\]
Now, if we solve this then it will be equal to -1
\[\begin{align}
& \Rightarrow -1=8\sin \dfrac{\pi }{7}\sin \dfrac{3\pi }{7}\sin \dfrac{5\pi }{7} \\
& \Rightarrow \sin \dfrac{\pi }{7}\sin \dfrac{3\pi }{7}\sin \dfrac{5\pi }{7}=\dfrac{-1}{8} \\
\end{align}\]
Now, we also know that
\[{{z}_{0}}+{{z}_{6}}={{e}^{i\dfrac{\pi }{7}}}+{{e}^{-i\dfrac{\pi }{7}}}=2\cos \dfrac{\pi }{7}\]
And similarly, we can say that \[{{z}_{1}}+{{z}_{5}}=2\cos \dfrac{3\pi }{7}\]
\[{{z}_{2}}+{{z}_{4}}=2\cos \dfrac{5\pi }{7}\]
According to the question, we know that \[{{z}^{7}}=-1\]
\[{{z}^{7}}=\cos \pi +i\sin \pi \]
And by the concept of complex numbers, we can write
\[\begin{align}
& \Rightarrow {{z}^{7}}=\cos \left( 4n+2 \right)\pi +i\sin \left( 4n+2 \right)\pi \\
& \Rightarrow z={{\left[ \cos \left( 4n+2 \right)\pi +i\sin \left( 4n+2 \right)\pi \right]}^{\dfrac{1}{7}}} \\
& \Rightarrow z=\left[ \cos \left( \dfrac{4n+2}{7} \right)\pi +i\sin \left( 4n+2 \right)\dfrac{\pi }{7} \right] \\
\end{align}\]
Or we can solve it as:
\[\begin{align}
& \cos \dfrac{\pi }{7}\cos \dfrac{3\pi }{7}\cos \dfrac{5\pi }{7} \\
& =\left( -\cos \dfrac{3\pi }{7} \right)\left( -\cos \dfrac{4\pi }{7} \right)\left( -\cos \dfrac{2\pi }{7} \right) \\
& =-\cos \dfrac{2\pi }{7}.\cos \dfrac{4\pi }{7}.\cos \dfrac{8\pi }{7} \\
\end{align}\]
\[={-2\sin \dfrac{2\pi }{7}\cos \dfrac{2\pi }{7}\cos \dfrac{4\pi }{7}}/{\left( 2\sin \left( 2\pi /7 \right) \right)}\;\]
\[\begin{align}
& =\dfrac{-2\times \sin {4\pi }/{7}\;.\cos {4\pi }/{7}\;\cos {8\pi }/{7}\;}{2\times 2\sin {2\pi }/{7}\;} \\
& =\dfrac{-2\times \sin {3\pi }/{7}\;\cos {8\pi }/{7}\;}{2\times 4\sin {2\pi }/{7}\;} \\
& =\dfrac{-\sin {16\pi }/{7}\;}{8\sin {2\pi }/{7}\;}=-\dfrac{1}{8} \\
\end{align}\]
So, option (a) is the correct option.
Note: For solving this question you should be careful for finding the value of \[{{z}_{n}}\]. And then all \[{{z}_{n}}\] values will add, subtract, multiply with each other and these will provide us the exponential values to trigonometric values. And then solve this very much carefully.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

