
How do you solve the equation ${x^2} + 2x - 6 = 0$ by completing the square ?
Answer
548.7k+ views
Hint: This problem deals with solving the given quadratic equation with the completing the square method. Completing the square is a method used to solve a quadratic equation by changing the form of the equation so that the left side is a perfect square trinomial. To solve $a{x^2} + bx + c = 0$ by completing the square: transform the equation so that the constant term,$c$ is alone on the right side.
Complete step-by-step solution:
Given a quadratic equation and we are asked to solve the quadratic equation in the completing the square method.
The given quadratic equation is given by: ${x^2} + 2x - 6 = 0$
Now consider the given equation as shown below:
$ \Rightarrow {x^2} + 2x - 6 = 0$
Add 1 on both sides to the equation as shown below:
$ \Rightarrow {x^2} + 2x + 1 - 6 = 1$
$ \Rightarrow \left( {{x^2} + 2x + 1} \right) - 6 = 1$
Now move the number -6 on to the other side of the equation, as ${x^2} + 2x + 1$, makes a perfect square:
$ \Rightarrow {x^2} + 2x + 1 = 7$
$ \Rightarrow {\left( {x + 1} \right)^2} = 7$
Now take square root on both sides as shown:
$ \Rightarrow \left( {x + 1} \right) = \pm \sqrt 7 $
So the solutions of $x$ are:
$ \Rightarrow \left( {x + 1} \right) = \sqrt 7 $ and $\left( {x + 1} \right) = - \sqrt 7 $
Hence $x = - 1 + \sqrt 7 $ and $x = - 1 - \sqrt 7 $
So the solutions of are as given below:
$\therefore x = - 1 \pm \sqrt 7 $
The solutions of $x$ are $ - 1 \pm \sqrt 7 $.
Note: While solving this problem please be careful when considering the terms, which of the one will be $a$, and which one will be $b$. To check whether the obtained result is correct or not, we can verify the result by solving the quadratic equation with the roots of the quadratic equation formula. If the quadratic equation is represented by : $a{x^2} + bx + c = 0$, then the roots of the quadratic equation is given by the formula : $x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$.
Complete step-by-step solution:
Given a quadratic equation and we are asked to solve the quadratic equation in the completing the square method.
The given quadratic equation is given by: ${x^2} + 2x - 6 = 0$
Now consider the given equation as shown below:
$ \Rightarrow {x^2} + 2x - 6 = 0$
Add 1 on both sides to the equation as shown below:
$ \Rightarrow {x^2} + 2x + 1 - 6 = 1$
$ \Rightarrow \left( {{x^2} + 2x + 1} \right) - 6 = 1$
Now move the number -6 on to the other side of the equation, as ${x^2} + 2x + 1$, makes a perfect square:
$ \Rightarrow {x^2} + 2x + 1 = 7$
$ \Rightarrow {\left( {x + 1} \right)^2} = 7$
Now take square root on both sides as shown:
$ \Rightarrow \left( {x + 1} \right) = \pm \sqrt 7 $
So the solutions of $x$ are:
$ \Rightarrow \left( {x + 1} \right) = \sqrt 7 $ and $\left( {x + 1} \right) = - \sqrt 7 $
Hence $x = - 1 + \sqrt 7 $ and $x = - 1 - \sqrt 7 $
So the solutions of are as given below:
$\therefore x = - 1 \pm \sqrt 7 $
The solutions of $x$ are $ - 1 \pm \sqrt 7 $.
Note: While solving this problem please be careful when considering the terms, which of the one will be $a$, and which one will be $b$. To check whether the obtained result is correct or not, we can verify the result by solving the quadratic equation with the roots of the quadratic equation formula. If the quadratic equation is represented by : $a{x^2} + bx + c = 0$, then the roots of the quadratic equation is given by the formula : $x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

