
Solve the equation, \[\tan \theta +\tan 2\theta +\tan 3\theta =0\].
Answer
609.6k+ views
Hint: Use the identity, \[\tan x=\dfrac{\sin x}{\cos x}\] then take x as \[\theta ,2\theta ,3\theta \] and then so simplification and reduce it into a single trigonometric ratio.
Complete step-by-step answer:
In the question we are given an equation which is \[\tan \theta +\tan 2\theta +\tan 3\theta =0\], and we have to find the general solutions or values of \[\theta \].
So, we know that,
\[\tan \theta +\tan 2\theta +\tan 3\theta =0\]
Now, we know that, \[\tan x=\dfrac{\sin x}{\cos x}\]. So, we will apply by putting x as \[\theta ,2\theta ,3\theta \]. So, we can rewrite the equation as,
\[\dfrac{\sin \theta }{\cos \theta }+\dfrac{\sin 2\theta }{\cos 2\theta }+\dfrac{\sin 3\theta }{\cos 3\theta }=0\]
On taking L.C.M of first two terms we get,
\[\dfrac{\sin \theta \cos 2\theta +\sin 2\theta \cos \theta }{\cos \theta \cos 2\theta }+\dfrac{\sin 3\theta }{\cos 3\theta }=0\]
Now, we will apply identity, \[\sin \left( A+B \right)=\sin A\cos B+\cos A\sin B\] and we can use it as, \[\sin A\cos B+\cos A\sin B=\sin \left( A+B \right)\], where, \[A=\theta \] and \[B=2\theta \]. So, we can write the equation as,
\[\dfrac{\sin 3\theta }{\cos \theta \cos 2\theta }+\dfrac{\sin 3\theta }{\cos 3\theta }=0\]
Now, on simplification we can rewrite equation as,
\[\sin 3\theta \left[ \dfrac{\cos 3\theta +\cos \theta \cos 2\theta }{\cos \theta \cos 2\theta \cos 3\theta } \right]=0\]
We can write the equation as,
\[\sin 3\theta \left( \cos 3\theta +\cos \theta \cos 2\theta \right)=0\]
Now, we will substitute and transform the terms of \[\cos 3\theta \] and \[\cos 2\theta \] in terms of \[\cos \theta \] using identities,
\[\cos 3\theta =4{{\cos }^{3}}\theta -3\cos \theta \]
And
\[\cos 2\theta =2{{\cos }^{2}}\theta -1\]
So, we get,
\[\sin 3\theta \left( 4{{\cos }^{3}}\theta -3\cos \theta +\cos \theta \left( 2{{\cos }^{2}}\theta
-1 \right) \right)=0\]
So, on simplification we can rewrite it as,
\[\sin 3\theta \left( 4{{\cos }^{3}}\theta -3\cos \theta +2{{\cos }^{2}}\theta -\cos \theta
\right)=0\]
We can write it as,
\[\sin 3\theta \left( 6{{\cos }^{3}}\theta -4\cos \theta \right)=0\]
Or
\[2\sin 3\theta \cos \theta \left( 3{{\cos }^{3}}\theta -1 \right)=0\]
So, we can say that for \[\sin 3\theta =0,\cos \theta =0\] and \[\cos \theta =\pm \sqrt{\dfrac{2}{3}}\].
Now, let’s take the first case where, \[\sin 3\theta =0\].
We know that, \[\sin 0=0\]. So, we can write, \[\sin 3\theta =\sin 0\].
So, \[3\theta \] is equal to \[n\pi +{{\left( -1 \right)}^{n}}\left( 0 \right)\] or \[n\pi \]. Hence, \[\theta \] is equal to \[\dfrac{n\pi }{3}\], where n is an integer which we got using formula if, \[\sin x=\sin \alpha \] then, \[x=n\pi +{{\left( -1 \right)}^{n}}\alpha \], where n is an integer.
Now, let’s take the next case where, \[\cos \theta =0\].
We know that, \[\cos \dfrac{\pi }{2}=0\]. So, we can write, \[\cos \theta =\cos \dfrac{\pi }{2}\].
So, \[\theta \] is equal to \[2n\pi \pm \left( \dfrac{\pi }{2} \right)\], where n is an integer which we got by using formula, \[\cos x=\cos \alpha \]. So, \[x=2n\pi \pm \alpha \], where n is any integer.
Now, similarly for \[\cos \theta =\pm \sqrt{\dfrac{2}{3}}\].
We can write it as,
\[\cos \theta =\cos \left( {{\cos }^{-1}}\left( \pm \sqrt{\dfrac{2}{3}} \right) \right)\]
So, \[\theta =2n\pi \pm {{\cos }^{-1}}\left( \pm \sqrt{\dfrac{2}{3}} \right)\], where n is an integer.
Hence, the general solutions are \[n\pi \], \[2n\pi \pm \dfrac{\pi }{2}\] and \[2n\pi \pm {{\cos }^{-1}}\left( \pm \sqrt{\dfrac{2}{3}} \right)\].
Note: We can also do by using identities, \[\tan 2\theta =\dfrac{2\tan \theta }{1-{{\tan }^{2}}\theta }\] and \[\tan 3\theta =\dfrac{3\tan \theta -{{\tan }^{3}}\theta }{1-3\tan \theta }\] and then changing the whole equation in terms of \[\tan \theta \].
Complete step-by-step answer:
In the question we are given an equation which is \[\tan \theta +\tan 2\theta +\tan 3\theta =0\], and we have to find the general solutions or values of \[\theta \].
So, we know that,
\[\tan \theta +\tan 2\theta +\tan 3\theta =0\]
Now, we know that, \[\tan x=\dfrac{\sin x}{\cos x}\]. So, we will apply by putting x as \[\theta ,2\theta ,3\theta \]. So, we can rewrite the equation as,
\[\dfrac{\sin \theta }{\cos \theta }+\dfrac{\sin 2\theta }{\cos 2\theta }+\dfrac{\sin 3\theta }{\cos 3\theta }=0\]
On taking L.C.M of first two terms we get,
\[\dfrac{\sin \theta \cos 2\theta +\sin 2\theta \cos \theta }{\cos \theta \cos 2\theta }+\dfrac{\sin 3\theta }{\cos 3\theta }=0\]
Now, we will apply identity, \[\sin \left( A+B \right)=\sin A\cos B+\cos A\sin B\] and we can use it as, \[\sin A\cos B+\cos A\sin B=\sin \left( A+B \right)\], where, \[A=\theta \] and \[B=2\theta \]. So, we can write the equation as,
\[\dfrac{\sin 3\theta }{\cos \theta \cos 2\theta }+\dfrac{\sin 3\theta }{\cos 3\theta }=0\]
Now, on simplification we can rewrite equation as,
\[\sin 3\theta \left[ \dfrac{\cos 3\theta +\cos \theta \cos 2\theta }{\cos \theta \cos 2\theta \cos 3\theta } \right]=0\]
We can write the equation as,
\[\sin 3\theta \left( \cos 3\theta +\cos \theta \cos 2\theta \right)=0\]
Now, we will substitute and transform the terms of \[\cos 3\theta \] and \[\cos 2\theta \] in terms of \[\cos \theta \] using identities,
\[\cos 3\theta =4{{\cos }^{3}}\theta -3\cos \theta \]
And
\[\cos 2\theta =2{{\cos }^{2}}\theta -1\]
So, we get,
\[\sin 3\theta \left( 4{{\cos }^{3}}\theta -3\cos \theta +\cos \theta \left( 2{{\cos }^{2}}\theta
-1 \right) \right)=0\]
So, on simplification we can rewrite it as,
\[\sin 3\theta \left( 4{{\cos }^{3}}\theta -3\cos \theta +2{{\cos }^{2}}\theta -\cos \theta
\right)=0\]
We can write it as,
\[\sin 3\theta \left( 6{{\cos }^{3}}\theta -4\cos \theta \right)=0\]
Or
\[2\sin 3\theta \cos \theta \left( 3{{\cos }^{3}}\theta -1 \right)=0\]
So, we can say that for \[\sin 3\theta =0,\cos \theta =0\] and \[\cos \theta =\pm \sqrt{\dfrac{2}{3}}\].
Now, let’s take the first case where, \[\sin 3\theta =0\].
We know that, \[\sin 0=0\]. So, we can write, \[\sin 3\theta =\sin 0\].
So, \[3\theta \] is equal to \[n\pi +{{\left( -1 \right)}^{n}}\left( 0 \right)\] or \[n\pi \]. Hence, \[\theta \] is equal to \[\dfrac{n\pi }{3}\], where n is an integer which we got using formula if, \[\sin x=\sin \alpha \] then, \[x=n\pi +{{\left( -1 \right)}^{n}}\alpha \], where n is an integer.
Now, let’s take the next case where, \[\cos \theta =0\].
We know that, \[\cos \dfrac{\pi }{2}=0\]. So, we can write, \[\cos \theta =\cos \dfrac{\pi }{2}\].
So, \[\theta \] is equal to \[2n\pi \pm \left( \dfrac{\pi }{2} \right)\], where n is an integer which we got by using formula, \[\cos x=\cos \alpha \]. So, \[x=2n\pi \pm \alpha \], where n is any integer.
Now, similarly for \[\cos \theta =\pm \sqrt{\dfrac{2}{3}}\].
We can write it as,
\[\cos \theta =\cos \left( {{\cos }^{-1}}\left( \pm \sqrt{\dfrac{2}{3}} \right) \right)\]
So, \[\theta =2n\pi \pm {{\cos }^{-1}}\left( \pm \sqrt{\dfrac{2}{3}} \right)\], where n is an integer.
Hence, the general solutions are \[n\pi \], \[2n\pi \pm \dfrac{\pi }{2}\] and \[2n\pi \pm {{\cos }^{-1}}\left( \pm \sqrt{\dfrac{2}{3}} \right)\].
Note: We can also do by using identities, \[\tan 2\theta =\dfrac{2\tan \theta }{1-{{\tan }^{2}}\theta }\] and \[\tan 3\theta =\dfrac{3\tan \theta -{{\tan }^{3}}\theta }{1-3\tan \theta }\] and then changing the whole equation in terms of \[\tan \theta \].
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Who gave "Inqilab Zindabad" slogan?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

