
Solve the equation $\left(\mathrm x-5\right)\left(\mathrm x-6\right)=\dfrac{25}{24^2}$ for x.
Answer
608.7k+ views
Hint: This equation can be solved easily be using the quadratic formula which is given by the formula-
$\dfrac{-\mathrm b\pm\sqrt{\mathrm b^2-4\mathrm{ac}}}{2\mathrm a}$
Here, a, b, c are constants and the equation is of the form ${ax}^{2}+{bx}+{c}=0$.
Complete step-by-step answer:
This equation can be solved by first converting it into general form and then applying quadratic formula.
$\left(\mathrm x-5\right)\left(\mathrm x-6\right)=\dfrac{25}{24^2}\\\mathrm{Let}\;\mathrm x-6\;=\;\mathrm p,\mathrm{then}\;\mathrm x-5=\mathrm p+1\\\mathrm{Let}\;\;\mathrm q=\dfrac5{24},\;\mathrm{then}\;\mathrm q^2=\dfrac{25}{24^2}\\\mathrm{The}\;\mathrm{equation}\;\mathrm{becomes}-\\\mathrm p\left(\mathrm p+1\right)=\mathrm q^2\\\mathrm p^2+\mathrm p-\mathrm q^2=0\\$
This is a quadratic equation in p. We can solve this simpler equation for p and then find the corresponding values of x.
Using the quadratic formula
$\dfrac{-\mathrm b\pm\sqrt{\mathrm b^2-4\mathrm{ac}}}{2\mathrm a}$
,
$\Rightarrow \mathrm p=\dfrac{-1\pm\sqrt{1^2-4\times1\times\left(-\mathrm q^2\right)}}2\\\mathrm p=\dfrac{-1\pm\sqrt{1+4\mathrm q^2}}2\\\mathrm \Rightarrow p=\dfrac{-1\pm\sqrt{1+4\times{\displaystyle\dfrac{25}{576}}}}2\\\mathrm \Rightarrow p=\dfrac{-1\pm\sqrt{1+{\displaystyle\dfrac{25}{144}}}}2=\dfrac{-1\pm\sqrt{\displaystyle\dfrac{169}{144}}}2=\dfrac{-1\pm{\displaystyle\dfrac{13}{12}}}2\\\mathrm \Rightarrow p=\dfrac1{24},\;-\dfrac{25}{24}\\$
We assumed that p = x - 6, so the values for x will be-
x = p + 6
$\mathrm x=\;\dfrac1{24}+6=\dfrac{145}{24}\\\mathrm x=-\dfrac{25}{24}+6=\dfrac{119}{24}$
These are the required values of x.
Note: There is an alternative and shorter method to solve this problem. This can be done by splitting the term method.
Let x - 6 = a, so x - 5 = a + 1
Equation can be written as-
$\Rightarrow a\left(a+1\right)=\dfrac{25}{24\times24}\\a\left(a+1\right)=\dfrac1{24}\times\left(\dfrac{24+1}{24}\right)\\a\left(a+1\right)=\dfrac1{24}\left(1+\dfrac1{24}\right)\\$
$a^2+a-\dfrac1{24}\left(1+\dfrac1{24}\right)=0\\a^2-\left(1+\dfrac1{24}\right)a+\dfrac1{24}a-\dfrac1{24}\left(1+\dfrac1{24}\right)=0\\\left(a+\dfrac1{24}\right)\left(a-\dfrac{25}{24}\right)=0$
From these values of a find the corresponding values of x.
$\dfrac{-\mathrm b\pm\sqrt{\mathrm b^2-4\mathrm{ac}}}{2\mathrm a}$
Here, a, b, c are constants and the equation is of the form ${ax}^{2}+{bx}+{c}=0$.
Complete step-by-step answer:
This equation can be solved by first converting it into general form and then applying quadratic formula.
$\left(\mathrm x-5\right)\left(\mathrm x-6\right)=\dfrac{25}{24^2}\\\mathrm{Let}\;\mathrm x-6\;=\;\mathrm p,\mathrm{then}\;\mathrm x-5=\mathrm p+1\\\mathrm{Let}\;\;\mathrm q=\dfrac5{24},\;\mathrm{then}\;\mathrm q^2=\dfrac{25}{24^2}\\\mathrm{The}\;\mathrm{equation}\;\mathrm{becomes}-\\\mathrm p\left(\mathrm p+1\right)=\mathrm q^2\\\mathrm p^2+\mathrm p-\mathrm q^2=0\\$
This is a quadratic equation in p. We can solve this simpler equation for p and then find the corresponding values of x.
Using the quadratic formula
$\dfrac{-\mathrm b\pm\sqrt{\mathrm b^2-4\mathrm{ac}}}{2\mathrm a}$
,
$\Rightarrow \mathrm p=\dfrac{-1\pm\sqrt{1^2-4\times1\times\left(-\mathrm q^2\right)}}2\\\mathrm p=\dfrac{-1\pm\sqrt{1+4\mathrm q^2}}2\\\mathrm \Rightarrow p=\dfrac{-1\pm\sqrt{1+4\times{\displaystyle\dfrac{25}{576}}}}2\\\mathrm \Rightarrow p=\dfrac{-1\pm\sqrt{1+{\displaystyle\dfrac{25}{144}}}}2=\dfrac{-1\pm\sqrt{\displaystyle\dfrac{169}{144}}}2=\dfrac{-1\pm{\displaystyle\dfrac{13}{12}}}2\\\mathrm \Rightarrow p=\dfrac1{24},\;-\dfrac{25}{24}\\$
We assumed that p = x - 6, so the values for x will be-
x = p + 6
$\mathrm x=\;\dfrac1{24}+6=\dfrac{145}{24}\\\mathrm x=-\dfrac{25}{24}+6=\dfrac{119}{24}$
These are the required values of x.
Note: There is an alternative and shorter method to solve this problem. This can be done by splitting the term method.
Let x - 6 = a, so x - 5 = a + 1
Equation can be written as-
$\Rightarrow a\left(a+1\right)=\dfrac{25}{24\times24}\\a\left(a+1\right)=\dfrac1{24}\times\left(\dfrac{24+1}{24}\right)\\a\left(a+1\right)=\dfrac1{24}\left(1+\dfrac1{24}\right)\\$
$a^2+a-\dfrac1{24}\left(1+\dfrac1{24}\right)=0\\a^2-\left(1+\dfrac1{24}\right)a+\dfrac1{24}a-\dfrac1{24}\left(1+\dfrac1{24}\right)=0\\\left(a+\dfrac1{24}\right)\left(a-\dfrac{25}{24}\right)=0$
From these values of a find the corresponding values of x.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

