
Solve the equation $\left(\mathrm x-5\right)\left(\mathrm x-6\right)=\dfrac{25}{24^2}$ for x.
Answer
594k+ views
Hint: This equation can be solved easily be using the quadratic formula which is given by the formula-
$\dfrac{-\mathrm b\pm\sqrt{\mathrm b^2-4\mathrm{ac}}}{2\mathrm a}$
Here, a, b, c are constants and the equation is of the form ${ax}^{2}+{bx}+{c}=0$.
Complete step-by-step answer:
This equation can be solved by first converting it into general form and then applying quadratic formula.
$\left(\mathrm x-5\right)\left(\mathrm x-6\right)=\dfrac{25}{24^2}\\\mathrm{Let}\;\mathrm x-6\;=\;\mathrm p,\mathrm{then}\;\mathrm x-5=\mathrm p+1\\\mathrm{Let}\;\;\mathrm q=\dfrac5{24},\;\mathrm{then}\;\mathrm q^2=\dfrac{25}{24^2}\\\mathrm{The}\;\mathrm{equation}\;\mathrm{becomes}-\\\mathrm p\left(\mathrm p+1\right)=\mathrm q^2\\\mathrm p^2+\mathrm p-\mathrm q^2=0\\$
This is a quadratic equation in p. We can solve this simpler equation for p and then find the corresponding values of x.
Using the quadratic formula
$\dfrac{-\mathrm b\pm\sqrt{\mathrm b^2-4\mathrm{ac}}}{2\mathrm a}$
,
$\Rightarrow \mathrm p=\dfrac{-1\pm\sqrt{1^2-4\times1\times\left(-\mathrm q^2\right)}}2\\\mathrm p=\dfrac{-1\pm\sqrt{1+4\mathrm q^2}}2\\\mathrm \Rightarrow p=\dfrac{-1\pm\sqrt{1+4\times{\displaystyle\dfrac{25}{576}}}}2\\\mathrm \Rightarrow p=\dfrac{-1\pm\sqrt{1+{\displaystyle\dfrac{25}{144}}}}2=\dfrac{-1\pm\sqrt{\displaystyle\dfrac{169}{144}}}2=\dfrac{-1\pm{\displaystyle\dfrac{13}{12}}}2\\\mathrm \Rightarrow p=\dfrac1{24},\;-\dfrac{25}{24}\\$
We assumed that p = x - 6, so the values for x will be-
x = p + 6
$\mathrm x=\;\dfrac1{24}+6=\dfrac{145}{24}\\\mathrm x=-\dfrac{25}{24}+6=\dfrac{119}{24}$
These are the required values of x.
Note: There is an alternative and shorter method to solve this problem. This can be done by splitting the term method.
Let x - 6 = a, so x - 5 = a + 1
Equation can be written as-
$\Rightarrow a\left(a+1\right)=\dfrac{25}{24\times24}\\a\left(a+1\right)=\dfrac1{24}\times\left(\dfrac{24+1}{24}\right)\\a\left(a+1\right)=\dfrac1{24}\left(1+\dfrac1{24}\right)\\$
$a^2+a-\dfrac1{24}\left(1+\dfrac1{24}\right)=0\\a^2-\left(1+\dfrac1{24}\right)a+\dfrac1{24}a-\dfrac1{24}\left(1+\dfrac1{24}\right)=0\\\left(a+\dfrac1{24}\right)\left(a-\dfrac{25}{24}\right)=0$
From these values of a find the corresponding values of x.
$\dfrac{-\mathrm b\pm\sqrt{\mathrm b^2-4\mathrm{ac}}}{2\mathrm a}$
Here, a, b, c are constants and the equation is of the form ${ax}^{2}+{bx}+{c}=0$.
Complete step-by-step answer:
This equation can be solved by first converting it into general form and then applying quadratic formula.
$\left(\mathrm x-5\right)\left(\mathrm x-6\right)=\dfrac{25}{24^2}\\\mathrm{Let}\;\mathrm x-6\;=\;\mathrm p,\mathrm{then}\;\mathrm x-5=\mathrm p+1\\\mathrm{Let}\;\;\mathrm q=\dfrac5{24},\;\mathrm{then}\;\mathrm q^2=\dfrac{25}{24^2}\\\mathrm{The}\;\mathrm{equation}\;\mathrm{becomes}-\\\mathrm p\left(\mathrm p+1\right)=\mathrm q^2\\\mathrm p^2+\mathrm p-\mathrm q^2=0\\$
This is a quadratic equation in p. We can solve this simpler equation for p and then find the corresponding values of x.
Using the quadratic formula
$\dfrac{-\mathrm b\pm\sqrt{\mathrm b^2-4\mathrm{ac}}}{2\mathrm a}$
,
$\Rightarrow \mathrm p=\dfrac{-1\pm\sqrt{1^2-4\times1\times\left(-\mathrm q^2\right)}}2\\\mathrm p=\dfrac{-1\pm\sqrt{1+4\mathrm q^2}}2\\\mathrm \Rightarrow p=\dfrac{-1\pm\sqrt{1+4\times{\displaystyle\dfrac{25}{576}}}}2\\\mathrm \Rightarrow p=\dfrac{-1\pm\sqrt{1+{\displaystyle\dfrac{25}{144}}}}2=\dfrac{-1\pm\sqrt{\displaystyle\dfrac{169}{144}}}2=\dfrac{-1\pm{\displaystyle\dfrac{13}{12}}}2\\\mathrm \Rightarrow p=\dfrac1{24},\;-\dfrac{25}{24}\\$
We assumed that p = x - 6, so the values for x will be-
x = p + 6
$\mathrm x=\;\dfrac1{24}+6=\dfrac{145}{24}\\\mathrm x=-\dfrac{25}{24}+6=\dfrac{119}{24}$
These are the required values of x.
Note: There is an alternative and shorter method to solve this problem. This can be done by splitting the term method.
Let x - 6 = a, so x - 5 = a + 1
Equation can be written as-
$\Rightarrow a\left(a+1\right)=\dfrac{25}{24\times24}\\a\left(a+1\right)=\dfrac1{24}\times\left(\dfrac{24+1}{24}\right)\\a\left(a+1\right)=\dfrac1{24}\left(1+\dfrac1{24}\right)\\$
$a^2+a-\dfrac1{24}\left(1+\dfrac1{24}\right)=0\\a^2-\left(1+\dfrac1{24}\right)a+\dfrac1{24}a-\dfrac1{24}\left(1+\dfrac1{24}\right)=0\\\left(a+\dfrac1{24}\right)\left(a-\dfrac{25}{24}\right)=0$
From these values of a find the corresponding values of x.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

