
Solve the equation: \[\left( 1-\tan \theta \right)\left( 1+\sin 2\theta \right)=1+\tan \theta \].
Answer
585.3k+ views
Hint: The formula for \[\sin 2\theta =\dfrac{2\tan \theta }{\left( 1+{{\tan }^{2}}\theta \right)}\]. Substitute it and simplify the expression until you get \[\left( 1+\tan \theta \right)\] and \[\left( -2{{\tan }^{2}}\theta \right)\] as equal to zero. From this find the value of \[\theta \] for both the cases and get the general equations.
Complete step-by-step answer:
We have been given which we need to solve.
\[\left( 1-\tan \theta \right)\left( 1+\sin 2\theta \right)=\left( 1+\tan \theta \right)\] - (1)
We know that \[\sin 2\theta =\dfrac{2\tan \theta }{1+{{\tan }^{2}}\theta }\]. Let us substitute this in (1).
\[\therefore \left( 1-\tan \theta \right)\left[ 1+\dfrac{2\tan \theta }{1+{{\tan }^{2}}\theta } \right]=\left( 1+\tan \theta \right)\]
Now let us simplify the above expression,
\[\therefore \left( 1-\tan \theta \right)\left[ \dfrac{1+{{\tan }^{2}}\theta +2\tan \theta }{1+{{\tan }^{2}}\theta } \right]=\left( 1+\tan \theta \right)\] - (2)
We know that, \[{{\left( x+y \right)}^{2}}={{x}^{2}}+{{y}^{2}}+2xy\].
Looking in the above expression if x = 1 and \[y=\tan \theta \], we get,
\[{{\left( x+y \right)}^{2}}={{\left( 1+\tan \theta \right)}^{2}}=1+{{\tan }^{2}}\theta +2\tan \theta \]
Hence put \[{{\left( 1+\tan \theta \right)}^{2}}\] in place of \[\left( 1+{{\tan }^{2}}\theta +2\tan \theta \right)\] in equation 2. Thus we get,
\[\left( 1-\tan \theta \right)\dfrac{{{\left( 1+\tan \theta \right)}^{2}}}{1+{{\tan }^{2}}\theta }=1+\tan \theta \]
Let us apply cross multiplication property.
\[\therefore \left( 1-\tan \theta \right){{\left( 1+\tan \theta \right)}^{2}}=\left( 1+{{\tan }^{2}}\theta \right)\left( 1+\tan \theta \right)\] - (3)
We know that, \[\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}\].
If a = 1 and b = \[\tan \theta \], then
\[\left( a-b \right)\left( a+b \right)=\left( 1-\tan \theta \right)\left( 1+\tan \theta \right)=\left( 1-{{\tan }^{2}}\theta \right)\]
Now, put \[\left( 1-\tan \theta \right)\left( 1+\tan \theta \right)=\left( 1-{{\tan }^{2}}\theta \right)\] in the LHS of (3).
\[\begin{align}
& \left( 1+\tan \theta \right)\left( 1-{{\tan }^{2}}\theta \right)=\left( 1+{{\tan }^{2}}\theta \right)\left( 1+\tan \theta \right) \\
& \Rightarrow \left[ \left( 1+\tan \theta \right)\left( 1-{{\tan }^{2}}\theta \right) \right]-\left[ \left( 1+{{\tan }^{2}}\theta \right)\left( 1+\tan \theta \right) \right]=0 \\
\end{align}\]
Let us take \[\left( 1+\tan \theta \right)\] as common from the above. We get,
\[\begin{align}
& \left( 1+\tan \theta \right)\left[ \left( 1-{{\tan }^{2}}\theta \right)-\left( 1+{{\tan }^{2}}\theta \right) \right]=0 \\
& \left( 1+\tan \theta \right)\left[ 1-{{\tan }^{2}}\theta -1-{{\tan }^{2}}\theta \right]=0 \\
& \left( 1+\tan \theta \right)\left[ -2{{\tan }^{2}}\theta \right]=0 \\
\end{align}\]
Hence from the above we have,
\[1+\tan \theta =0\] or \[-2{{\tan }^{2}}\theta =0\]
In \[-2{{\tan }^{2}}\theta =0\]
\[\Rightarrow {{\tan }^{2}}\theta =0\]
Here \[{{\tan }^{2}}\theta \] is a positive quantity as it is a square and a positive quantity can only be zero if the term itself is zero.
\[\therefore \tan \theta =0\]
In \[1+\tan \theta =0\]
\[\Rightarrow \tan \theta =-1\]
When \[\tan \theta =0\] \[\Rightarrow \theta =0,\pi ,2\pi ,3\pi ,...\]
\[\tan \theta =-1\Rightarrow \theta =\dfrac{3\pi }{4},\dfrac{7\pi }{4},\dfrac{11\pi }{4},...,-\dfrac{\pi }{4}\]
Here \[\tan \theta \] can be zero only if the value of the \[\theta \] is \[0,\pi ,2\pi ,3\pi ,...\].
Similarly the value of \[\tan \theta \] can only be (-1) if the values of the \[\theta \] are \[\dfrac{\pi }{4},\dfrac{3\pi }{4},\dfrac{7\pi }{4},\dfrac{11\pi }{4},....\].
Thus taking generally, we have \[\tan \theta =\tan \alpha \].
Thus we can write the general equation as, \[\theta =n\pi +\alpha \].
Thus if we put, \[\alpha =-\dfrac{\pi }{4}\]
\[\theta =n\pi +\left( -\dfrac{\pi }{4} \right)\], where n = 0, 1, 2, …..
Or \[\theta =n\pi \], n = 0, 1, 2.
Thus we have the general solutions of the answers as,
\[\theta =n\pi -\dfrac{\pi }{4}\] and \[\theta =n\pi \]
Note: Here, \[\sin 2x=\dfrac{2\tan x}{1+{{\tan }^{2}}x}\].
If we put \[\tan x=\dfrac{\sin x}{\cos x}\] and simplify it, we will get the expression as \[\sin 2x=2\sin x\cos x\], which is an identity. Thus remember simple identities like this to make your solution easier.
Complete step-by-step answer:
We have been given which we need to solve.
\[\left( 1-\tan \theta \right)\left( 1+\sin 2\theta \right)=\left( 1+\tan \theta \right)\] - (1)
We know that \[\sin 2\theta =\dfrac{2\tan \theta }{1+{{\tan }^{2}}\theta }\]. Let us substitute this in (1).
\[\therefore \left( 1-\tan \theta \right)\left[ 1+\dfrac{2\tan \theta }{1+{{\tan }^{2}}\theta } \right]=\left( 1+\tan \theta \right)\]
Now let us simplify the above expression,
\[\therefore \left( 1-\tan \theta \right)\left[ \dfrac{1+{{\tan }^{2}}\theta +2\tan \theta }{1+{{\tan }^{2}}\theta } \right]=\left( 1+\tan \theta \right)\] - (2)
We know that, \[{{\left( x+y \right)}^{2}}={{x}^{2}}+{{y}^{2}}+2xy\].
Looking in the above expression if x = 1 and \[y=\tan \theta \], we get,
\[{{\left( x+y \right)}^{2}}={{\left( 1+\tan \theta \right)}^{2}}=1+{{\tan }^{2}}\theta +2\tan \theta \]
Hence put \[{{\left( 1+\tan \theta \right)}^{2}}\] in place of \[\left( 1+{{\tan }^{2}}\theta +2\tan \theta \right)\] in equation 2. Thus we get,
\[\left( 1-\tan \theta \right)\dfrac{{{\left( 1+\tan \theta \right)}^{2}}}{1+{{\tan }^{2}}\theta }=1+\tan \theta \]
Let us apply cross multiplication property.
\[\therefore \left( 1-\tan \theta \right){{\left( 1+\tan \theta \right)}^{2}}=\left( 1+{{\tan }^{2}}\theta \right)\left( 1+\tan \theta \right)\] - (3)
We know that, \[\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}\].
If a = 1 and b = \[\tan \theta \], then
\[\left( a-b \right)\left( a+b \right)=\left( 1-\tan \theta \right)\left( 1+\tan \theta \right)=\left( 1-{{\tan }^{2}}\theta \right)\]
Now, put \[\left( 1-\tan \theta \right)\left( 1+\tan \theta \right)=\left( 1-{{\tan }^{2}}\theta \right)\] in the LHS of (3).
\[\begin{align}
& \left( 1+\tan \theta \right)\left( 1-{{\tan }^{2}}\theta \right)=\left( 1+{{\tan }^{2}}\theta \right)\left( 1+\tan \theta \right) \\
& \Rightarrow \left[ \left( 1+\tan \theta \right)\left( 1-{{\tan }^{2}}\theta \right) \right]-\left[ \left( 1+{{\tan }^{2}}\theta \right)\left( 1+\tan \theta \right) \right]=0 \\
\end{align}\]
Let us take \[\left( 1+\tan \theta \right)\] as common from the above. We get,
\[\begin{align}
& \left( 1+\tan \theta \right)\left[ \left( 1-{{\tan }^{2}}\theta \right)-\left( 1+{{\tan }^{2}}\theta \right) \right]=0 \\
& \left( 1+\tan \theta \right)\left[ 1-{{\tan }^{2}}\theta -1-{{\tan }^{2}}\theta \right]=0 \\
& \left( 1+\tan \theta \right)\left[ -2{{\tan }^{2}}\theta \right]=0 \\
\end{align}\]
Hence from the above we have,
\[1+\tan \theta =0\] or \[-2{{\tan }^{2}}\theta =0\]
In \[-2{{\tan }^{2}}\theta =0\]
\[\Rightarrow {{\tan }^{2}}\theta =0\]
Here \[{{\tan }^{2}}\theta \] is a positive quantity as it is a square and a positive quantity can only be zero if the term itself is zero.
\[\therefore \tan \theta =0\]
In \[1+\tan \theta =0\]
\[\Rightarrow \tan \theta =-1\]
When \[\tan \theta =0\] \[\Rightarrow \theta =0,\pi ,2\pi ,3\pi ,...\]
\[\tan \theta =-1\Rightarrow \theta =\dfrac{3\pi }{4},\dfrac{7\pi }{4},\dfrac{11\pi }{4},...,-\dfrac{\pi }{4}\]
Here \[\tan \theta \] can be zero only if the value of the \[\theta \] is \[0,\pi ,2\pi ,3\pi ,...\].
Similarly the value of \[\tan \theta \] can only be (-1) if the values of the \[\theta \] are \[\dfrac{\pi }{4},\dfrac{3\pi }{4},\dfrac{7\pi }{4},\dfrac{11\pi }{4},....\].
Thus taking generally, we have \[\tan \theta =\tan \alpha \].
Thus we can write the general equation as, \[\theta =n\pi +\alpha \].
Thus if we put, \[\alpha =-\dfrac{\pi }{4}\]
\[\theta =n\pi +\left( -\dfrac{\pi }{4} \right)\], where n = 0, 1, 2, …..
Or \[\theta =n\pi \], n = 0, 1, 2.
Thus we have the general solutions of the answers as,
\[\theta =n\pi -\dfrac{\pi }{4}\] and \[\theta =n\pi \]
Note: Here, \[\sin 2x=\dfrac{2\tan x}{1+{{\tan }^{2}}x}\].
If we put \[\tan x=\dfrac{\sin x}{\cos x}\] and simplify it, we will get the expression as \[\sin 2x=2\sin x\cos x\], which is an identity. Thus remember simple identities like this to make your solution easier.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

