
How do you solve the equation \[\dfrac{{\tan {{85}^ \circ } - \tan {{25}^ \circ }}}{{1 + \tan {{85}^ \circ }\tan {{25}^ \circ }}}\] and find its value?
Answer
490.2k+ views
Hint:For solving these types of questions it is very important to learn the values of trigonometric ratios like cos 30, tan30 etc. and to remember the trigonometric formulas. We will use the trigonometric formula to reduce the equation in terms of known values.
Complete step by step answer:
We have to solve the equation \[\dfrac{{\tan {{85}^ \circ } - \tan {{25}^ \circ }}}{{1 + \tan {{85}^ \circ }\tan {{25}^ \circ }}}\]
$ = \dfrac{{\tan {{85}^ \circ } - \tan {{25}^ \circ }}}{{1 + \tan {{85}^ \circ }\tan {{25}^ \circ }}}$
We will use the formula $\tan \left( {a - b} \right) = \dfrac{{\tan a - \tan b}}{{1 + \tan a\tan b}}$ to reduce the equation
$ \Rightarrow \dfrac{{\tan a - \tan b}}{{1 + \tan a\tan b}} = \tan \left( {a - b} \right)$
We will take a as 85 and b equals to 25.
$ \Rightarrow = \dfrac{{\tan {{85}^ \circ } - \tan {{25}^ \circ }}}{{1 + \tan {{85}^ \circ }\tan {{25}^ \circ }}} = \tan \left( {{{85}^ \circ } - {{25}^ \circ }} \right)$
$ \Rightarrow = \dfrac{{\tan {{85}^ \circ } - \tan {{25}^ \circ }}}{{1 + \tan {{85}^ \circ }\tan {{25}^ \circ }}} = \tan \left( {{{60}^ \circ }} \right)$
We know that the value of tan60 is root 3
$ \Rightarrow = \dfrac{{\tan {{85}^ \circ } - \tan {{25}^ \circ }}}{{1 + \tan {{85}^ \circ }\tan {{25}^ \circ }}} = \sqrt 3 $
Hence, the value of equation \[\dfrac{{\tan {{85}^ \circ } - \tan {{25}^ \circ }}}{{1 + \tan {{85}^ \circ }\tan {{25}^ \circ }}}\] is $\sqrt 3 $.
Note: We should never directly put the values in the equation. We always try to reduce the equation using trigonometric formula like $\tan \left( {a - b} \right) = \dfrac{{\tan a - \tan b}}{{1 + \tan a\tan b}}$or some others. But in some easy level questions we can also find the solution just by putting the values.
Complete step by step answer:
We have to solve the equation \[\dfrac{{\tan {{85}^ \circ } - \tan {{25}^ \circ }}}{{1 + \tan {{85}^ \circ }\tan {{25}^ \circ }}}\]
$ = \dfrac{{\tan {{85}^ \circ } - \tan {{25}^ \circ }}}{{1 + \tan {{85}^ \circ }\tan {{25}^ \circ }}}$
We will use the formula $\tan \left( {a - b} \right) = \dfrac{{\tan a - \tan b}}{{1 + \tan a\tan b}}$ to reduce the equation
$ \Rightarrow \dfrac{{\tan a - \tan b}}{{1 + \tan a\tan b}} = \tan \left( {a - b} \right)$
We will take a as 85 and b equals to 25.
$ \Rightarrow = \dfrac{{\tan {{85}^ \circ } - \tan {{25}^ \circ }}}{{1 + \tan {{85}^ \circ }\tan {{25}^ \circ }}} = \tan \left( {{{85}^ \circ } - {{25}^ \circ }} \right)$
$ \Rightarrow = \dfrac{{\tan {{85}^ \circ } - \tan {{25}^ \circ }}}{{1 + \tan {{85}^ \circ }\tan {{25}^ \circ }}} = \tan \left( {{{60}^ \circ }} \right)$
We know that the value of tan60 is root 3
$ \Rightarrow = \dfrac{{\tan {{85}^ \circ } - \tan {{25}^ \circ }}}{{1 + \tan {{85}^ \circ }\tan {{25}^ \circ }}} = \sqrt 3 $
Hence, the value of equation \[\dfrac{{\tan {{85}^ \circ } - \tan {{25}^ \circ }}}{{1 + \tan {{85}^ \circ }\tan {{25}^ \circ }}}\] is $\sqrt 3 $.
Note: We should never directly put the values in the equation. We always try to reduce the equation using trigonometric formula like $\tan \left( {a - b} \right) = \dfrac{{\tan a - \tan b}}{{1 + \tan a\tan b}}$or some others. But in some easy level questions we can also find the solution just by putting the values.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

