
Solve the equation \[\cos \theta .cos2\theta .\cos 3\theta =\dfrac{1}{4}\].
Answer
599.7k+ views
Hint: We will apply a trigonometric formula given by \[2\operatorname{cosAcosB}=\cos \left( A+B \right)+\cos \left( A-B \right)\] to simplify the terms in the given equation. Then we will again use other trigonometric formulas like \[cos2\theta =2{{\cos }^{2}}\theta -1\] to rearrange and simplify the terms further.
Complete step-by-step answer:
We will first consider the expression \[\cos \theta .cos2\theta .\cos 3\theta =\dfrac{1}{4}.....(1)\]
We will consider the left hand side of the equation (1).
\[\Rightarrow \cos \theta .cos2\theta .\cos 3\theta \]
By multiplying and dividing it by 2, we get,
\[\Rightarrow \dfrac{1}{2}\times 2\cos \theta .cos2\theta .\cos 3\theta =\dfrac{2}{2}\left( cos\theta cos3\theta \right)\cos 2\theta \]
By applying the formula \[2\operatorname{cosAcosB}=\cos \left( A+B \right)+\cos \left( A-B \right)\] to the expression \[2\cos \theta \cos 3\theta =\cos \left( \theta +3\theta \right)\cos \left( \theta -3\theta \right)\].
Therefore, we have,
\[\begin{align}
& \cos \theta .\cos 2\theta .\cos 3\theta =\dfrac{\left[ \cos \left( \theta +3\theta \right)\cos \left( \theta -3\theta \right) \right]}{2}\cos 2\theta \\
& \cos \theta .\cos 2\theta .\cos 3\theta =\left[ \cos 4\theta +\cos (-2\theta ) \right]\dfrac{\cos 2\theta }{2} \\
\end{align}\]
Since we know that \[-2\theta \] in \[\cos \left( -2\theta \right)=\cos 2\theta \]. Thus we get,
\[\cos \theta .\cos 2\theta .\cos 3\theta =\left[ \cos 4\theta +\cos 2\theta \right]\dfrac{\cos 2\theta }{2}\]
Now we will substitute the value of \[\cos \theta .\cos 2\theta .\cos 3\theta \] and write it in
equation (1). Therefore, we have,
\[\begin{align}
& \left[ \cos 4\theta +cos2\theta \right]\dfrac{\cos 2\theta }{2}=\dfrac{1}{4} \\
& \left[ \cos 4\theta +\cos 2\theta \right]\cos 2\theta =\dfrac{1}{2} \\
& 2\left[ \cos 4\theta +\cos 2\theta \right]\cos \left( 2\theta \right)=\dfrac{1}{2}\times 2 \\
& 2\left[ \cos 4\theta +\cos 2\theta \right]\cos 2\theta =1 \\
\end{align}\]
\[\begin{align}
& 2\cos 4\theta \cos 2\theta +2{{\cos }^{2}}(2\theta )=1 \\
& 2\cos 4\theta \cos 2\theta +2{{\cos }^{2}}(2\theta )-1=0 \\
\end{align}\]
Now we will apply the formula of \[{{\cos }^{2}}(2\theta )\].
We know that \[cos2\theta =2{{\cos }^{2}}\theta -1\]. So if we have \[\cos 4\theta =2{{\cos
}^{2}}\left( 2\theta \right)-1\].
Therefore, we have,
\[\begin{align}
& 2\cos 4\theta \cos 2\theta +\left[ 2{{\cos }^{2}}\left( 2\theta \right)-1 \right]=0 \\
& 2cos4\theta \cos 2\theta +\cos 4\theta =0 \\
& \cos 4\theta \left[ 2\cos 2\theta +1 \right]=0 \\
\end{align}\]
Therefore, we have \[\cos 4\theta =0\] or \[\left[ 2\cos 2\theta +1 \right]=0\].
Since we know that \[0=\cos \dfrac{\pi }{2}\], therefore, we have that \[\cos 4\theta =\cos \dfrac{\pi }{2}\].
\[4\theta =\dfrac{\pi }{2}\] can’t be directly put here. The value of \[\cos \dfrac{\pi }{2}\] is positive in the first quadrant and negative in the second quadrant. So \[\cos 4\theta =\cos \dfrac{\pi }{2}\].
\[\Rightarrow 4\theta =\dfrac{\pi }{2}\] which is now correct.
\[\begin{align}
& \Rightarrow 4\theta =\dfrac{\pi }{2}+2n\pi \\
& \theta =\dfrac{\pi }{8}+\dfrac{2n\pi }{4} \\
\end{align}\]
\[\theta =\dfrac{\pi }{8}+\dfrac{n\pi }{4}\], where \[n=\pm 1,\pm 2,...\]
Now we will consider the expression,
\[\begin{align}
& 2\cos 2\theta +1=0 \\
& 2\cos 2\theta =-1 \\
& \cos 2\theta =\dfrac{-1}{2} \\
\end{align}\]
As we know that the value of \[\dfrac{1}{2}=\cos \dfrac{\pi }{3}\].
Therefore, we have that,
\[\cos 2\theta =-\cos \dfrac{\pi }{3}\]
We know that the value of cos is negative in the second and the third quadrant. Therefore,
we consider the second quadrant. In this quadrant,
\[\begin{align}
& \cos \dfrac{\pi }{3}=\cos \left( \pi -\dfrac{\pi }{3} \right) \\
& \cos 2\theta =\cos \left( \pi -\dfrac{\pi }{3} \right) \\
& \cos 2\theta =\cos \left( \dfrac{2\pi }{3} \right) \\
\end{align}\]
\[2\theta =\dfrac{2\pi }{3}+2n\pi \], where \[n=\pm 0,\pm 1,\pm 2,...\]
or \[\theta =\dfrac{2\pi }{2.3}+\dfrac{2n\pi }{2}\]
\[\theta =\dfrac{\pi }{3}+n\pi \], where \[n=\pm 0,\pm 1,\pm 2,...\]
Also, we will consider the third quadrant in which,
\[\begin{align}
& \cos \dfrac{\pi }{3}=\cos \left( \pi +\dfrac{\pi }{3} \right) \\
& \cos 2\theta =\cos \left( \pi +\dfrac{\pi }{3} \right) \\
& 2\theta =\dfrac{4\pi }{3} \\
\end{align}\]
or \[2\theta =\dfrac{4\pi }{3}+2n\pi \], where \[n=\pm 0,\pm 1,\pm 2,...\]
\[\theta =\dfrac{4\pi }{3.2}+\dfrac{2n\pi }{2}\], where \[n=\pm 0,\pm 1,\pm 2,...\]
\[\theta =\dfrac{2\pi }{3}+n\pi \], where \[n=\pm 0,\pm 1,\pm 2,...\]
Hence the value of \[\theta =\dfrac{\pi }{8},\dfrac{n\pi }{4},\dfrac{\pi }{3}+n\pi ,\dfrac{2\pi
}{3}+n\pi \].
Note: While solving this question we come across one term equal to \[-\cos \left( \dfrac{\pi }{3} \right)\]. Do not change this value to \[-\cos \dfrac{\pi }{3}=\cos \left( \dfrac{-\pi }{3} \right)\] which results into positive \[\cos \dfrac{\pi }{3}\]. This will hinder the actual value of the equation for \[\theta \]. By applying the formula we can have a new expression by \[2\cos A\cos B=\cos \left( A+B \right)\cos \left( A-B \right)\]. Since in the question, it is applied to \[2\cos \theta \cos 3\theta \], it’s because of the ignorance of the complex terms created by \[2\cos \theta \cos 2\theta \].
Complete step-by-step answer:
We will first consider the expression \[\cos \theta .cos2\theta .\cos 3\theta =\dfrac{1}{4}.....(1)\]
We will consider the left hand side of the equation (1).
\[\Rightarrow \cos \theta .cos2\theta .\cos 3\theta \]
By multiplying and dividing it by 2, we get,
\[\Rightarrow \dfrac{1}{2}\times 2\cos \theta .cos2\theta .\cos 3\theta =\dfrac{2}{2}\left( cos\theta cos3\theta \right)\cos 2\theta \]
By applying the formula \[2\operatorname{cosAcosB}=\cos \left( A+B \right)+\cos \left( A-B \right)\] to the expression \[2\cos \theta \cos 3\theta =\cos \left( \theta +3\theta \right)\cos \left( \theta -3\theta \right)\].
Therefore, we have,
\[\begin{align}
& \cos \theta .\cos 2\theta .\cos 3\theta =\dfrac{\left[ \cos \left( \theta +3\theta \right)\cos \left( \theta -3\theta \right) \right]}{2}\cos 2\theta \\
& \cos \theta .\cos 2\theta .\cos 3\theta =\left[ \cos 4\theta +\cos (-2\theta ) \right]\dfrac{\cos 2\theta }{2} \\
\end{align}\]
Since we know that \[-2\theta \] in \[\cos \left( -2\theta \right)=\cos 2\theta \]. Thus we get,
\[\cos \theta .\cos 2\theta .\cos 3\theta =\left[ \cos 4\theta +\cos 2\theta \right]\dfrac{\cos 2\theta }{2}\]
Now we will substitute the value of \[\cos \theta .\cos 2\theta .\cos 3\theta \] and write it in
equation (1). Therefore, we have,
\[\begin{align}
& \left[ \cos 4\theta +cos2\theta \right]\dfrac{\cos 2\theta }{2}=\dfrac{1}{4} \\
& \left[ \cos 4\theta +\cos 2\theta \right]\cos 2\theta =\dfrac{1}{2} \\
& 2\left[ \cos 4\theta +\cos 2\theta \right]\cos \left( 2\theta \right)=\dfrac{1}{2}\times 2 \\
& 2\left[ \cos 4\theta +\cos 2\theta \right]\cos 2\theta =1 \\
\end{align}\]
\[\begin{align}
& 2\cos 4\theta \cos 2\theta +2{{\cos }^{2}}(2\theta )=1 \\
& 2\cos 4\theta \cos 2\theta +2{{\cos }^{2}}(2\theta )-1=0 \\
\end{align}\]
Now we will apply the formula of \[{{\cos }^{2}}(2\theta )\].
We know that \[cos2\theta =2{{\cos }^{2}}\theta -1\]. So if we have \[\cos 4\theta =2{{\cos
}^{2}}\left( 2\theta \right)-1\].
Therefore, we have,
\[\begin{align}
& 2\cos 4\theta \cos 2\theta +\left[ 2{{\cos }^{2}}\left( 2\theta \right)-1 \right]=0 \\
& 2cos4\theta \cos 2\theta +\cos 4\theta =0 \\
& \cos 4\theta \left[ 2\cos 2\theta +1 \right]=0 \\
\end{align}\]
Therefore, we have \[\cos 4\theta =0\] or \[\left[ 2\cos 2\theta +1 \right]=0\].
Since we know that \[0=\cos \dfrac{\pi }{2}\], therefore, we have that \[\cos 4\theta =\cos \dfrac{\pi }{2}\].
\[4\theta =\dfrac{\pi }{2}\] can’t be directly put here. The value of \[\cos \dfrac{\pi }{2}\] is positive in the first quadrant and negative in the second quadrant. So \[\cos 4\theta =\cos \dfrac{\pi }{2}\].
\[\Rightarrow 4\theta =\dfrac{\pi }{2}\] which is now correct.
\[\begin{align}
& \Rightarrow 4\theta =\dfrac{\pi }{2}+2n\pi \\
& \theta =\dfrac{\pi }{8}+\dfrac{2n\pi }{4} \\
\end{align}\]
\[\theta =\dfrac{\pi }{8}+\dfrac{n\pi }{4}\], where \[n=\pm 1,\pm 2,...\]
Now we will consider the expression,
\[\begin{align}
& 2\cos 2\theta +1=0 \\
& 2\cos 2\theta =-1 \\
& \cos 2\theta =\dfrac{-1}{2} \\
\end{align}\]
As we know that the value of \[\dfrac{1}{2}=\cos \dfrac{\pi }{3}\].
Therefore, we have that,
\[\cos 2\theta =-\cos \dfrac{\pi }{3}\]
We know that the value of cos is negative in the second and the third quadrant. Therefore,
we consider the second quadrant. In this quadrant,
\[\begin{align}
& \cos \dfrac{\pi }{3}=\cos \left( \pi -\dfrac{\pi }{3} \right) \\
& \cos 2\theta =\cos \left( \pi -\dfrac{\pi }{3} \right) \\
& \cos 2\theta =\cos \left( \dfrac{2\pi }{3} \right) \\
\end{align}\]
\[2\theta =\dfrac{2\pi }{3}+2n\pi \], where \[n=\pm 0,\pm 1,\pm 2,...\]
or \[\theta =\dfrac{2\pi }{2.3}+\dfrac{2n\pi }{2}\]
\[\theta =\dfrac{\pi }{3}+n\pi \], where \[n=\pm 0,\pm 1,\pm 2,...\]
Also, we will consider the third quadrant in which,
\[\begin{align}
& \cos \dfrac{\pi }{3}=\cos \left( \pi +\dfrac{\pi }{3} \right) \\
& \cos 2\theta =\cos \left( \pi +\dfrac{\pi }{3} \right) \\
& 2\theta =\dfrac{4\pi }{3} \\
\end{align}\]
or \[2\theta =\dfrac{4\pi }{3}+2n\pi \], where \[n=\pm 0,\pm 1,\pm 2,...\]
\[\theta =\dfrac{4\pi }{3.2}+\dfrac{2n\pi }{2}\], where \[n=\pm 0,\pm 1,\pm 2,...\]
\[\theta =\dfrac{2\pi }{3}+n\pi \], where \[n=\pm 0,\pm 1,\pm 2,...\]
Hence the value of \[\theta =\dfrac{\pi }{8},\dfrac{n\pi }{4},\dfrac{\pi }{3}+n\pi ,\dfrac{2\pi
}{3}+n\pi \].
Note: While solving this question we come across one term equal to \[-\cos \left( \dfrac{\pi }{3} \right)\]. Do not change this value to \[-\cos \dfrac{\pi }{3}=\cos \left( \dfrac{-\pi }{3} \right)\] which results into positive \[\cos \dfrac{\pi }{3}\]. This will hinder the actual value of the equation for \[\theta \]. By applying the formula we can have a new expression by \[2\cos A\cos B=\cos \left( A+B \right)\cos \left( A-B \right)\]. Since in the question, it is applied to \[2\cos \theta \cos 3\theta \], it’s because of the ignorance of the complex terms created by \[2\cos \theta \cos 2\theta \].
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
The shortest day of the year in India

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What is the missing number in the sequence 259142027 class 10 maths CBSE

