
Solve the equation \[\cos \theta .cos2\theta .\cos 3\theta =\dfrac{1}{4}\].
Answer
599.7k+ views
Hint: We will apply a trigonometric formula given by \[2\operatorname{cosAcosB}=\cos \left( A+B \right)+\cos \left( A-B \right)\] to simplify the terms in the given equation. Then we will again use other trigonometric formulas like \[cos2\theta =2{{\cos }^{2}}\theta -1\] to rearrange and simplify the terms further.
Complete step-by-step answer:
We will first consider the expression \[\cos \theta .cos2\theta .\cos 3\theta =\dfrac{1}{4}.....(1)\]
We will consider the left hand side of the equation (1).
\[\Rightarrow \cos \theta .cos2\theta .\cos 3\theta \]
By multiplying and dividing it by 2, we get,
\[\Rightarrow \dfrac{1}{2}\times 2\cos \theta .cos2\theta .\cos 3\theta =\dfrac{2}{2}\left( cos\theta cos3\theta \right)\cos 2\theta \]
By applying the formula \[2\operatorname{cosAcosB}=\cos \left( A+B \right)+\cos \left( A-B \right)\] to the expression \[2\cos \theta \cos 3\theta =\cos \left( \theta +3\theta \right)\cos \left( \theta -3\theta \right)\].
Therefore, we have,
\[\begin{align}
& \cos \theta .\cos 2\theta .\cos 3\theta =\dfrac{\left[ \cos \left( \theta +3\theta \right)\cos \left( \theta -3\theta \right) \right]}{2}\cos 2\theta \\
& \cos \theta .\cos 2\theta .\cos 3\theta =\left[ \cos 4\theta +\cos (-2\theta ) \right]\dfrac{\cos 2\theta }{2} \\
\end{align}\]
Since we know that \[-2\theta \] in \[\cos \left( -2\theta \right)=\cos 2\theta \]. Thus we get,
\[\cos \theta .\cos 2\theta .\cos 3\theta =\left[ \cos 4\theta +\cos 2\theta \right]\dfrac{\cos 2\theta }{2}\]
Now we will substitute the value of \[\cos \theta .\cos 2\theta .\cos 3\theta \] and write it in
equation (1). Therefore, we have,
\[\begin{align}
& \left[ \cos 4\theta +cos2\theta \right]\dfrac{\cos 2\theta }{2}=\dfrac{1}{4} \\
& \left[ \cos 4\theta +\cos 2\theta \right]\cos 2\theta =\dfrac{1}{2} \\
& 2\left[ \cos 4\theta +\cos 2\theta \right]\cos \left( 2\theta \right)=\dfrac{1}{2}\times 2 \\
& 2\left[ \cos 4\theta +\cos 2\theta \right]\cos 2\theta =1 \\
\end{align}\]
\[\begin{align}
& 2\cos 4\theta \cos 2\theta +2{{\cos }^{2}}(2\theta )=1 \\
& 2\cos 4\theta \cos 2\theta +2{{\cos }^{2}}(2\theta )-1=0 \\
\end{align}\]
Now we will apply the formula of \[{{\cos }^{2}}(2\theta )\].
We know that \[cos2\theta =2{{\cos }^{2}}\theta -1\]. So if we have \[\cos 4\theta =2{{\cos
}^{2}}\left( 2\theta \right)-1\].
Therefore, we have,
\[\begin{align}
& 2\cos 4\theta \cos 2\theta +\left[ 2{{\cos }^{2}}\left( 2\theta \right)-1 \right]=0 \\
& 2cos4\theta \cos 2\theta +\cos 4\theta =0 \\
& \cos 4\theta \left[ 2\cos 2\theta +1 \right]=0 \\
\end{align}\]
Therefore, we have \[\cos 4\theta =0\] or \[\left[ 2\cos 2\theta +1 \right]=0\].
Since we know that \[0=\cos \dfrac{\pi }{2}\], therefore, we have that \[\cos 4\theta =\cos \dfrac{\pi }{2}\].
\[4\theta =\dfrac{\pi }{2}\] can’t be directly put here. The value of \[\cos \dfrac{\pi }{2}\] is positive in the first quadrant and negative in the second quadrant. So \[\cos 4\theta =\cos \dfrac{\pi }{2}\].
\[\Rightarrow 4\theta =\dfrac{\pi }{2}\] which is now correct.
\[\begin{align}
& \Rightarrow 4\theta =\dfrac{\pi }{2}+2n\pi \\
& \theta =\dfrac{\pi }{8}+\dfrac{2n\pi }{4} \\
\end{align}\]
\[\theta =\dfrac{\pi }{8}+\dfrac{n\pi }{4}\], where \[n=\pm 1,\pm 2,...\]
Now we will consider the expression,
\[\begin{align}
& 2\cos 2\theta +1=0 \\
& 2\cos 2\theta =-1 \\
& \cos 2\theta =\dfrac{-1}{2} \\
\end{align}\]
As we know that the value of \[\dfrac{1}{2}=\cos \dfrac{\pi }{3}\].
Therefore, we have that,
\[\cos 2\theta =-\cos \dfrac{\pi }{3}\]
We know that the value of cos is negative in the second and the third quadrant. Therefore,
we consider the second quadrant. In this quadrant,
\[\begin{align}
& \cos \dfrac{\pi }{3}=\cos \left( \pi -\dfrac{\pi }{3} \right) \\
& \cos 2\theta =\cos \left( \pi -\dfrac{\pi }{3} \right) \\
& \cos 2\theta =\cos \left( \dfrac{2\pi }{3} \right) \\
\end{align}\]
\[2\theta =\dfrac{2\pi }{3}+2n\pi \], where \[n=\pm 0,\pm 1,\pm 2,...\]
or \[\theta =\dfrac{2\pi }{2.3}+\dfrac{2n\pi }{2}\]
\[\theta =\dfrac{\pi }{3}+n\pi \], where \[n=\pm 0,\pm 1,\pm 2,...\]
Also, we will consider the third quadrant in which,
\[\begin{align}
& \cos \dfrac{\pi }{3}=\cos \left( \pi +\dfrac{\pi }{3} \right) \\
& \cos 2\theta =\cos \left( \pi +\dfrac{\pi }{3} \right) \\
& 2\theta =\dfrac{4\pi }{3} \\
\end{align}\]
or \[2\theta =\dfrac{4\pi }{3}+2n\pi \], where \[n=\pm 0,\pm 1,\pm 2,...\]
\[\theta =\dfrac{4\pi }{3.2}+\dfrac{2n\pi }{2}\], where \[n=\pm 0,\pm 1,\pm 2,...\]
\[\theta =\dfrac{2\pi }{3}+n\pi \], where \[n=\pm 0,\pm 1,\pm 2,...\]
Hence the value of \[\theta =\dfrac{\pi }{8},\dfrac{n\pi }{4},\dfrac{\pi }{3}+n\pi ,\dfrac{2\pi
}{3}+n\pi \].
Note: While solving this question we come across one term equal to \[-\cos \left( \dfrac{\pi }{3} \right)\]. Do not change this value to \[-\cos \dfrac{\pi }{3}=\cos \left( \dfrac{-\pi }{3} \right)\] which results into positive \[\cos \dfrac{\pi }{3}\]. This will hinder the actual value of the equation for \[\theta \]. By applying the formula we can have a new expression by \[2\cos A\cos B=\cos \left( A+B \right)\cos \left( A-B \right)\]. Since in the question, it is applied to \[2\cos \theta \cos 3\theta \], it’s because of the ignorance of the complex terms created by \[2\cos \theta \cos 2\theta \].
Complete step-by-step answer:
We will first consider the expression \[\cos \theta .cos2\theta .\cos 3\theta =\dfrac{1}{4}.....(1)\]
We will consider the left hand side of the equation (1).
\[\Rightarrow \cos \theta .cos2\theta .\cos 3\theta \]
By multiplying and dividing it by 2, we get,
\[\Rightarrow \dfrac{1}{2}\times 2\cos \theta .cos2\theta .\cos 3\theta =\dfrac{2}{2}\left( cos\theta cos3\theta \right)\cos 2\theta \]
By applying the formula \[2\operatorname{cosAcosB}=\cos \left( A+B \right)+\cos \left( A-B \right)\] to the expression \[2\cos \theta \cos 3\theta =\cos \left( \theta +3\theta \right)\cos \left( \theta -3\theta \right)\].
Therefore, we have,
\[\begin{align}
& \cos \theta .\cos 2\theta .\cos 3\theta =\dfrac{\left[ \cos \left( \theta +3\theta \right)\cos \left( \theta -3\theta \right) \right]}{2}\cos 2\theta \\
& \cos \theta .\cos 2\theta .\cos 3\theta =\left[ \cos 4\theta +\cos (-2\theta ) \right]\dfrac{\cos 2\theta }{2} \\
\end{align}\]
Since we know that \[-2\theta \] in \[\cos \left( -2\theta \right)=\cos 2\theta \]. Thus we get,
\[\cos \theta .\cos 2\theta .\cos 3\theta =\left[ \cos 4\theta +\cos 2\theta \right]\dfrac{\cos 2\theta }{2}\]
Now we will substitute the value of \[\cos \theta .\cos 2\theta .\cos 3\theta \] and write it in
equation (1). Therefore, we have,
\[\begin{align}
& \left[ \cos 4\theta +cos2\theta \right]\dfrac{\cos 2\theta }{2}=\dfrac{1}{4} \\
& \left[ \cos 4\theta +\cos 2\theta \right]\cos 2\theta =\dfrac{1}{2} \\
& 2\left[ \cos 4\theta +\cos 2\theta \right]\cos \left( 2\theta \right)=\dfrac{1}{2}\times 2 \\
& 2\left[ \cos 4\theta +\cos 2\theta \right]\cos 2\theta =1 \\
\end{align}\]
\[\begin{align}
& 2\cos 4\theta \cos 2\theta +2{{\cos }^{2}}(2\theta )=1 \\
& 2\cos 4\theta \cos 2\theta +2{{\cos }^{2}}(2\theta )-1=0 \\
\end{align}\]
Now we will apply the formula of \[{{\cos }^{2}}(2\theta )\].
We know that \[cos2\theta =2{{\cos }^{2}}\theta -1\]. So if we have \[\cos 4\theta =2{{\cos
}^{2}}\left( 2\theta \right)-1\].
Therefore, we have,
\[\begin{align}
& 2\cos 4\theta \cos 2\theta +\left[ 2{{\cos }^{2}}\left( 2\theta \right)-1 \right]=0 \\
& 2cos4\theta \cos 2\theta +\cos 4\theta =0 \\
& \cos 4\theta \left[ 2\cos 2\theta +1 \right]=0 \\
\end{align}\]
Therefore, we have \[\cos 4\theta =0\] or \[\left[ 2\cos 2\theta +1 \right]=0\].
Since we know that \[0=\cos \dfrac{\pi }{2}\], therefore, we have that \[\cos 4\theta =\cos \dfrac{\pi }{2}\].
\[4\theta =\dfrac{\pi }{2}\] can’t be directly put here. The value of \[\cos \dfrac{\pi }{2}\] is positive in the first quadrant and negative in the second quadrant. So \[\cos 4\theta =\cos \dfrac{\pi }{2}\].
\[\Rightarrow 4\theta =\dfrac{\pi }{2}\] which is now correct.
\[\begin{align}
& \Rightarrow 4\theta =\dfrac{\pi }{2}+2n\pi \\
& \theta =\dfrac{\pi }{8}+\dfrac{2n\pi }{4} \\
\end{align}\]
\[\theta =\dfrac{\pi }{8}+\dfrac{n\pi }{4}\], where \[n=\pm 1,\pm 2,...\]
Now we will consider the expression,
\[\begin{align}
& 2\cos 2\theta +1=0 \\
& 2\cos 2\theta =-1 \\
& \cos 2\theta =\dfrac{-1}{2} \\
\end{align}\]
As we know that the value of \[\dfrac{1}{2}=\cos \dfrac{\pi }{3}\].
Therefore, we have that,
\[\cos 2\theta =-\cos \dfrac{\pi }{3}\]
We know that the value of cos is negative in the second and the third quadrant. Therefore,
we consider the second quadrant. In this quadrant,
\[\begin{align}
& \cos \dfrac{\pi }{3}=\cos \left( \pi -\dfrac{\pi }{3} \right) \\
& \cos 2\theta =\cos \left( \pi -\dfrac{\pi }{3} \right) \\
& \cos 2\theta =\cos \left( \dfrac{2\pi }{3} \right) \\
\end{align}\]
\[2\theta =\dfrac{2\pi }{3}+2n\pi \], where \[n=\pm 0,\pm 1,\pm 2,...\]
or \[\theta =\dfrac{2\pi }{2.3}+\dfrac{2n\pi }{2}\]
\[\theta =\dfrac{\pi }{3}+n\pi \], where \[n=\pm 0,\pm 1,\pm 2,...\]
Also, we will consider the third quadrant in which,
\[\begin{align}
& \cos \dfrac{\pi }{3}=\cos \left( \pi +\dfrac{\pi }{3} \right) \\
& \cos 2\theta =\cos \left( \pi +\dfrac{\pi }{3} \right) \\
& 2\theta =\dfrac{4\pi }{3} \\
\end{align}\]
or \[2\theta =\dfrac{4\pi }{3}+2n\pi \], where \[n=\pm 0,\pm 1,\pm 2,...\]
\[\theta =\dfrac{4\pi }{3.2}+\dfrac{2n\pi }{2}\], where \[n=\pm 0,\pm 1,\pm 2,...\]
\[\theta =\dfrac{2\pi }{3}+n\pi \], where \[n=\pm 0,\pm 1,\pm 2,...\]
Hence the value of \[\theta =\dfrac{\pi }{8},\dfrac{n\pi }{4},\dfrac{\pi }{3}+n\pi ,\dfrac{2\pi
}{3}+n\pi \].
Note: While solving this question we come across one term equal to \[-\cos \left( \dfrac{\pi }{3} \right)\]. Do not change this value to \[-\cos \dfrac{\pi }{3}=\cos \left( \dfrac{-\pi }{3} \right)\] which results into positive \[\cos \dfrac{\pi }{3}\]. This will hinder the actual value of the equation for \[\theta \]. By applying the formula we can have a new expression by \[2\cos A\cos B=\cos \left( A+B \right)\cos \left( A-B \right)\]. Since in the question, it is applied to \[2\cos \theta \cos 3\theta \], it’s because of the ignorance of the complex terms created by \[2\cos \theta \cos 2\theta \].
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Trending doubts
The shortest day of the year in India

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

