
Solve the equation \[\cos \theta +\sin \theta =cos2\theta +sin2\theta \].
Answer
612k+ views
Hint: We will apply the formula of \[\operatorname{cosA}+\operatorname{cosB}\] given by \[-2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right)\] and \[sinA-sinB\] given by \[2\cos \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right)\] to simplify and solve the equation given in the question.
Complete step-by-step answer:
We will first consider the expression \[\cos \theta +\sin \theta =cos2\theta +sin2\theta .....(1)\]
Now we will take \[cos2\theta \] on the left side of the equality sign and \[\sin \theta \] to the right side of the equality sign.
Therefore, we have,
\[\cos \theta -cos2\theta =sin2\theta -\sin \theta \]
Now we will apply two trigonometry formulas, given by,
\[\operatorname{cosA}+\operatorname{cosB}=-2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right)\] and
\[sinA-sinB=2\cos \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right)\].
Therefore, we have a new expression written as,
\[\begin{align}
& -2\sin \left( \dfrac{\theta +2\theta }{2} \right)\sin \left( \dfrac{\theta -2\theta }{2} \right)=2\cos \left( \dfrac{2\theta +\theta }{2} \right)\sin \left( \dfrac{2\theta -\theta }{2} \right) \\
& -\sin \left( \dfrac{3\theta }{2} \right)\sin \left( \dfrac{-\theta }{2} \right)=\cos \left( \dfrac{3\theta }{2} \right)\sin \left( \dfrac{\theta }{2} \right) \\
\end{align}\]
By applying the formula \[\sin (-\theta )=-\sin \theta \], thus we get,
\[\begin{align}
& -\sin \left( \dfrac{3\theta }{2} \right)\left[ -\sin \left( \dfrac{\theta }{2} \right) \right]=\cos \left( \dfrac{3\theta }{2} \right)\sin \left( \dfrac{\theta }{2} \right) \\
& \sin \left( \dfrac{3\theta }{2} \right)\sin \left( \dfrac{\theta }{2} \right)=\cos \left( \dfrac{3\theta }{2} \right)\sin \left( \dfrac{\theta }{2} \right) \\
& \sin \left( \dfrac{3\theta }{2} \right)\sin \left( \dfrac{\theta }{2} \right)-\cos \left( \dfrac{3\theta }{2} \right)\sin \left( \dfrac{\theta }{2} \right)=0 \\
\end{align}\]
Now we will take the common term \[\sin \left( \dfrac{\theta }{2} \right)=0\] or \[\sin \left( \dfrac{3\theta }{2} \right)-\cos \left( \dfrac{3\theta }{2} \right)=0\].
First we will consider that \[\sin \left( \dfrac{\theta }{2} \right)=0\].
\[\Rightarrow \sin \left( \dfrac{\theta }{2} \right)=\sin {{0}^{\circ }}\]. This is because we know that \[0=\sin {{0}^{\circ }}\].
\[\begin{align}
& \dfrac{\theta }{2}={{0}^{\circ }} \\
& \theta ={{0}^{\circ }} \\
\end{align}\]
Also we know that \[sin\left( n\pi \right)=0\], where \[n=\pm 0,\pm 1...\]
\[sin\left( \dfrac{\theta }{2} \right)=\sin \left( n\pi \right)\], where \[n=\pm 0,\pm 1...\]
\[\left( \dfrac{\theta }{2} \right)=\left( n\pi \right)\], where \[n=\pm 0,\pm 1...\]
\[\theta =2n\pi \], where \[n=\pm 0,\pm 1...\]
Now we will consider \[\sin \left( \dfrac{3\theta }{2} \right)-\cos \left( \dfrac{3\theta }{2}
\right)=0\].
\[\sin \left( \dfrac{3\theta }{2} \right)=\cos \left( \dfrac{3\theta }{2} \right)....(2)\]
As we know that there is only one condition in which \[\sin \theta =\cos \theta \]. The angle \[\dfrac{\pi }{4}\] results in \[\sin \left( \dfrac{\pi }{4} \right)=\cos \left( \dfrac{\pi }{4} \right)=\dfrac{1}{\sqrt{2}}\]. Since we have,
\[\begin{align}
& \sin \left( \dfrac{\pi }{4} \right)=\cos \left( \dfrac{\pi }{4} \right) \\
& \dfrac{\sin \left( \dfrac{\pi }{4} \right)}{\cos \left( \dfrac{\pi }{4} \right)}=1 \\
\end{align}\]
As we know that the value of \[\tan \theta =\dfrac{\sin \theta }{\cos \theta }\]. Therefore, we have,
\[\tan \left( \dfrac{\pi }{4} \right)=1....(3)\]
Now we will consider the equation (2). If we write, \[\sin \left( \dfrac{3\theta }{2} \right)=\cos \left( \dfrac{3\theta }{2} \right)\] as \[\dfrac{\sin \left( \dfrac{3\theta }{2} \right)}{\cos \left( \dfrac{3\theta }{2} \right)}=1\], then this will create contradiction, since \[\cos \left( \dfrac{3\theta }{2} \right)\ne 0\].
\[\begin{align}
& \cos \left( \dfrac{3\theta }{2} \right)\ne 0 \\
& \cos \left( \dfrac{3\theta }{2} \right)\ne \cos \left( \dfrac{\pi }{2} \right) \\
& \left( \dfrac{3\theta }{2} \right)\ne \left( \dfrac{\pi }{2} \right) \\
\end{align}\]
If we choose \[\dfrac{3\theta }{2}=\dfrac{\pi }{4}\] which is not equal to \[\dfrac{\pi }{2}\], therefore we have that,
\[\dfrac{\sin \left( \dfrac{3\theta }{2} \right)}{\cos \left( \dfrac{3\theta }{2} \right)}=1\] when
\[\left( \dfrac{3\theta }{2} \right)\ne \left( \dfrac{\pi }{2} \right)\]
\[\tan \left( \dfrac{3\theta }{2} \right)=1.....(4)\]
By equation equations (3) and (4), we have that,
\[\tan \left( \dfrac{3\theta }{2} \right)=\tan \left( \dfrac{\pi }{4} \right)\]
\[\Rightarrow \left( \dfrac{3\theta }{2} \right)=\left( \dfrac{\pi }{4} \right)\] or \[\left( \dfrac{3\theta }{2} \right)=\dfrac{\pi }{4}+k\pi \].
\[\left( \dfrac{3\theta }{2} \right)=\dfrac{\pi }{4}+k\pi \], where \[k=0,\pm 1,\pm 2...\]
\[\theta =\dfrac{\pi }{6}+\dfrac{2}{3}k\pi \], where \[k=0,\pm 1,\pm 2...\]
Hence the solution of equation (1) is given by \[\theta =\dfrac{\pi }{6}+\dfrac{2}{3}k\pi \].
Here k = n.
Note: Whenever we get an expression of the form ab = ca, Don’t try to cancel the terms. First we will take ca to the left hand side of the equality, and then we will solve it as ab – ca = 0 or a (b-c) = 0. Here, automatically a = 0 but in trigonometric terms, this fact is considered as a concept. If we are writing any term in the denominator it should be checked for which value the denominator is not equal to 0. With the value at which the denominator is not 0 the proceedings of solutions can be done.
Complete step-by-step answer:
We will first consider the expression \[\cos \theta +\sin \theta =cos2\theta +sin2\theta .....(1)\]
Now we will take \[cos2\theta \] on the left side of the equality sign and \[\sin \theta \] to the right side of the equality sign.
Therefore, we have,
\[\cos \theta -cos2\theta =sin2\theta -\sin \theta \]
Now we will apply two trigonometry formulas, given by,
\[\operatorname{cosA}+\operatorname{cosB}=-2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right)\] and
\[sinA-sinB=2\cos \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right)\].
Therefore, we have a new expression written as,
\[\begin{align}
& -2\sin \left( \dfrac{\theta +2\theta }{2} \right)\sin \left( \dfrac{\theta -2\theta }{2} \right)=2\cos \left( \dfrac{2\theta +\theta }{2} \right)\sin \left( \dfrac{2\theta -\theta }{2} \right) \\
& -\sin \left( \dfrac{3\theta }{2} \right)\sin \left( \dfrac{-\theta }{2} \right)=\cos \left( \dfrac{3\theta }{2} \right)\sin \left( \dfrac{\theta }{2} \right) \\
\end{align}\]
By applying the formula \[\sin (-\theta )=-\sin \theta \], thus we get,
\[\begin{align}
& -\sin \left( \dfrac{3\theta }{2} \right)\left[ -\sin \left( \dfrac{\theta }{2} \right) \right]=\cos \left( \dfrac{3\theta }{2} \right)\sin \left( \dfrac{\theta }{2} \right) \\
& \sin \left( \dfrac{3\theta }{2} \right)\sin \left( \dfrac{\theta }{2} \right)=\cos \left( \dfrac{3\theta }{2} \right)\sin \left( \dfrac{\theta }{2} \right) \\
& \sin \left( \dfrac{3\theta }{2} \right)\sin \left( \dfrac{\theta }{2} \right)-\cos \left( \dfrac{3\theta }{2} \right)\sin \left( \dfrac{\theta }{2} \right)=0 \\
\end{align}\]
Now we will take the common term \[\sin \left( \dfrac{\theta }{2} \right)=0\] or \[\sin \left( \dfrac{3\theta }{2} \right)-\cos \left( \dfrac{3\theta }{2} \right)=0\].
First we will consider that \[\sin \left( \dfrac{\theta }{2} \right)=0\].
\[\Rightarrow \sin \left( \dfrac{\theta }{2} \right)=\sin {{0}^{\circ }}\]. This is because we know that \[0=\sin {{0}^{\circ }}\].
\[\begin{align}
& \dfrac{\theta }{2}={{0}^{\circ }} \\
& \theta ={{0}^{\circ }} \\
\end{align}\]
Also we know that \[sin\left( n\pi \right)=0\], where \[n=\pm 0,\pm 1...\]
\[sin\left( \dfrac{\theta }{2} \right)=\sin \left( n\pi \right)\], where \[n=\pm 0,\pm 1...\]
\[\left( \dfrac{\theta }{2} \right)=\left( n\pi \right)\], where \[n=\pm 0,\pm 1...\]
\[\theta =2n\pi \], where \[n=\pm 0,\pm 1...\]
Now we will consider \[\sin \left( \dfrac{3\theta }{2} \right)-\cos \left( \dfrac{3\theta }{2}
\right)=0\].
\[\sin \left( \dfrac{3\theta }{2} \right)=\cos \left( \dfrac{3\theta }{2} \right)....(2)\]
As we know that there is only one condition in which \[\sin \theta =\cos \theta \]. The angle \[\dfrac{\pi }{4}\] results in \[\sin \left( \dfrac{\pi }{4} \right)=\cos \left( \dfrac{\pi }{4} \right)=\dfrac{1}{\sqrt{2}}\]. Since we have,
\[\begin{align}
& \sin \left( \dfrac{\pi }{4} \right)=\cos \left( \dfrac{\pi }{4} \right) \\
& \dfrac{\sin \left( \dfrac{\pi }{4} \right)}{\cos \left( \dfrac{\pi }{4} \right)}=1 \\
\end{align}\]
As we know that the value of \[\tan \theta =\dfrac{\sin \theta }{\cos \theta }\]. Therefore, we have,
\[\tan \left( \dfrac{\pi }{4} \right)=1....(3)\]
Now we will consider the equation (2). If we write, \[\sin \left( \dfrac{3\theta }{2} \right)=\cos \left( \dfrac{3\theta }{2} \right)\] as \[\dfrac{\sin \left( \dfrac{3\theta }{2} \right)}{\cos \left( \dfrac{3\theta }{2} \right)}=1\], then this will create contradiction, since \[\cos \left( \dfrac{3\theta }{2} \right)\ne 0\].
\[\begin{align}
& \cos \left( \dfrac{3\theta }{2} \right)\ne 0 \\
& \cos \left( \dfrac{3\theta }{2} \right)\ne \cos \left( \dfrac{\pi }{2} \right) \\
& \left( \dfrac{3\theta }{2} \right)\ne \left( \dfrac{\pi }{2} \right) \\
\end{align}\]
If we choose \[\dfrac{3\theta }{2}=\dfrac{\pi }{4}\] which is not equal to \[\dfrac{\pi }{2}\], therefore we have that,
\[\dfrac{\sin \left( \dfrac{3\theta }{2} \right)}{\cos \left( \dfrac{3\theta }{2} \right)}=1\] when
\[\left( \dfrac{3\theta }{2} \right)\ne \left( \dfrac{\pi }{2} \right)\]
\[\tan \left( \dfrac{3\theta }{2} \right)=1.....(4)\]
By equation equations (3) and (4), we have that,
\[\tan \left( \dfrac{3\theta }{2} \right)=\tan \left( \dfrac{\pi }{4} \right)\]
\[\Rightarrow \left( \dfrac{3\theta }{2} \right)=\left( \dfrac{\pi }{4} \right)\] or \[\left( \dfrac{3\theta }{2} \right)=\dfrac{\pi }{4}+k\pi \].
\[\left( \dfrac{3\theta }{2} \right)=\dfrac{\pi }{4}+k\pi \], where \[k=0,\pm 1,\pm 2...\]
\[\theta =\dfrac{\pi }{6}+\dfrac{2}{3}k\pi \], where \[k=0,\pm 1,\pm 2...\]
Hence the solution of equation (1) is given by \[\theta =\dfrac{\pi }{6}+\dfrac{2}{3}k\pi \].
Here k = n.
Note: Whenever we get an expression of the form ab = ca, Don’t try to cancel the terms. First we will take ca to the left hand side of the equality, and then we will solve it as ab – ca = 0 or a (b-c) = 0. Here, automatically a = 0 but in trigonometric terms, this fact is considered as a concept. If we are writing any term in the denominator it should be checked for which value the denominator is not equal to 0. With the value at which the denominator is not 0 the proceedings of solutions can be done.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

