
Solve the equation \[\cos \theta +cos3\theta -\cos 2\theta =0\].
Answer
610.8k+ views
Hint: We will apply the trigonometric formula given by \[\cos 2\theta =2{{\cos }^{2}}\theta -1\] and \[\cos 3\theta =4co{{s}^{3}}\theta -3\cos \theta \] where \[2\theta \] and \[3\theta \] are twice and thrice of the angle \[\theta \]. After applying these, the given equation will be simplified as an equation of degree 3, which can then be solved further.
Complete step-by-step answer:
Consider equation, \[\cos \theta +cos3\theta -\cos 2\theta =0.....(1)\]
Now we will apply the formula of \[\cos 2\theta =2{{\cos }^{2}}\theta -1\] and \[\cos 3\theta =4co{{s}^{3}}\theta -3\cos \theta \] in equation (1).
\[\begin{align}
& \Rightarrow \cos \theta +\left( 4co{{s}^{3}}\theta -3\cos \theta \right)-\left( 2{{\cos }^{2}}\theta -1 \right)=0 \\
& \Rightarrow \cos \theta +4{{\cos }^{3}}\theta -3\cos \theta -2{{\cos }^{2}}\theta +1=0 \\
\end{align}\]
Now we will arrange the expression in the order of degree of \[cos\theta \]. That is,
\[\begin{align}
& \Rightarrow 4{{\cos }^{3}}\theta -2{{\cos }^{2}}\theta -3\cos \theta +\cos \theta +1=0 \\
& \Rightarrow 4{{\cos }^{3}}\theta -2{{\cos }^{2}}\theta -2\cos \theta +1=0...(2) \\
\end{align}\]
Now we will put \[x=\cos \theta \] in equation (2). This will result into \[{{x}^{2}}={{\cos }^{2}}\theta \] and \[{{x}^{3}}={{\cos }^{3}}\theta \]. So we get a new expression, given by,
\[\begin{align}
& 4{{\cos }^{3}}\theta -2{{\cos }^{2}}\theta +1=0 \\
& 4{{x}^{3}}-2{{x}^{2}}-2x+1=0....(3) \\
\end{align}\]
Now we will use the hit and trial method and substitute the value of x in equation (3). First substitute x = 0 in equation (3).
\[4{{\left( 0 \right)}^{3}}-2{{\left( 0 \right)}^{2}}-2\left( 0 \right)+1=1\]
This value of x = 0 does not satisfy the equation (3) as the equation does not result into 0. Now we will apply the value \[x=\dfrac{1}{2}\] and substitute it in equation (3).
\[\Rightarrow 4{{\left( \dfrac{1}{2} \right)}^{3}}-2{{\left( \dfrac{1}{2} \right)}^{2}}-2\left( \dfrac{1}{2} \right)+1=\dfrac{4}{8}-\dfrac{2}{4}-1+1=0\]
This clearly implies that \[x=\dfrac{1}{2}\] is a factor of equation (3) or \[\left( x-\dfrac{1}{2} \right)\] is a factor.
Now we will divide \[x-\dfrac{1}{2}\] to equation (3).
Thus we get,
\[x-\dfrac{1}{2}\overset{4{{x}^{2}}-2}{\overline{\left){\begin{align}
& 4{{x}^{3}}-2{{x}^{2}}-2x+1 \\
& \underline{4{{x}^{3}}-2{{x}^{2}}} \\
& -2x+1 \\
& \underline{-2x+1} \\
& \underline{000000} \\
\end{align}}\right.}}\]
Clearly we factorize the equation \[4{{x}^{3}}-2{{x}^{2}}-2x+1\] into \[\left( x-\dfrac{1}{2} \right)\left( 4{{x}^{2}}-2 \right)\].
\[\left( x-\dfrac{1}{2} \right)\left( 4{{x}^{2}}-2 \right)=0\]
Now \[x-\dfrac{1}{2}=0\] or \[4{{x}^{2}}-2=0\].
Consider \[x-\dfrac{1}{2}=0\] or \[x=\dfrac{1}{2}\] since we know \[x=\cos \theta \]. \[\Rightarrow \cos \theta =\dfrac{1}{2}\].
We know that the \[\dfrac{1}{2}\] is the value of \[\cos \dfrac{\pi }{3}\].
\[\Rightarrow \cos \theta =\dfrac{\pi }{3}\].
The value of cos is positive in the first and fourth quadrant. In quadrant I, we have \[\cos \theta =\dfrac{\pi }{3}\].
\[\begin{align}
& \Rightarrow \cos \theta =\dfrac{\pi }{3} \\
& \Rightarrow \theta =\dfrac{\pi }{3} \\
\end{align}\]
\[\Rightarrow \theta =\dfrac{\pi }{3}+2n\pi \], where \[n=0,\pm 1,\pm 2....\]
In fourth quadrant, we have,
\[\begin{align}
& \cos \dfrac{\pi }{3}=\cos \left( 2\pi -\dfrac{\pi }{3} \right) \\
& \cos \theta =\cos \left( \dfrac{6\pi -\pi }{3} \right) \\
& \cos \theta =\cos \left( \dfrac{5\pi }{3} \right) \\
& \theta =\dfrac{5\pi }{3} \\
\end{align}\]
\[\theta =\dfrac{5\pi }{3}+2n\pi \], where \[n=0,\pm 1,\pm 2....\]
Now we will consider \[4{{x}^{2}}-2=0\].
\[\begin{align}
& 4{{x}^{2}}=2 \\
& {{x}^{2}}=\dfrac{1}{2} \\
& x=\pm \dfrac{1}{\sqrt{2}} \\
\end{align}\]
Since we know that \[\cos \theta =x\]. Thus we can write \[\cos \theta =\dfrac{1}{\sqrt{2}}\] and \[\cos \theta =\dfrac{-1}{\sqrt{2}}\].
Now we will consider, \[\cos \theta =\dfrac{1}{\sqrt{2}}\]. As we know that \[\cos \left( \dfrac{\pi }{4} \right)=\dfrac{1}{\sqrt{2}}\].
\[\Rightarrow \cos \theta =\cos \dfrac{\pi }{4}\]
The value of cos is positive in the first and fourth quadrant. So we first consider quadrant I.
\[\begin{align}
& \Rightarrow \cos \theta =\cos \dfrac{\pi }{4} \\
& \Rightarrow \theta =\dfrac{\pi }{4} \\
\end{align}\]
\[\Rightarrow \theta =\dfrac{\pi }{4}+2n\pi \], where \[n=0,\pm 1,\pm 2....\]
Now we will consider the fourth quadrant.
In the fourth quadrant, the value of \[\cos \dfrac{\pi }{4}=\cos \left( 2\pi -\dfrac{\pi }{4} \right)\].
\[\begin{align}
& \Rightarrow \cos \theta =\cos \left( 2\pi -\dfrac{\pi }{4} \right) \\
& \Rightarrow \cos \theta =\cos \left( \dfrac{8\pi -\pi }{4} \right) \\
& \Rightarrow \cos \theta =\cos \left( \dfrac{7\pi }{4} \right) \\
& \Rightarrow \theta =\dfrac{7\pi }{4} \\
\end{align}\]
\[\Rightarrow \theta =\dfrac{7\pi }{4}+2n\pi \], where \[n=0,\pm 1,\pm 2....\]
Now we will consider \[\cos \theta =\dfrac{-1}{\sqrt{2}}\] as the value of \[\dfrac{1}{\sqrt{2}}=\cos \dfrac{\pi }{4}\].
\[\Rightarrow \cos \theta =-\cos \dfrac{\pi }{4}\]
We know that the value of cos is negative in the second and third quadrant. So we will consider the second quadrant. In this quadrant, the value of \[-\cos \dfrac{\pi }{4}=\cos \left( \pi -\dfrac{\pi }{4} \right)\].
\[\begin{align}
& \Rightarrow cos\theta =cos\left( \pi -\dfrac{\pi }{4} \right) \\
& \Rightarrow cos\theta =cos\left( \dfrac{3\pi }{4} \right) \\
& \Rightarrow \theta =\dfrac{3\pi }{4} \\
\end{align}\]
\[\Rightarrow \theta =\dfrac{3\pi }{4}+2n\pi \], where \[n=0,\pm 1,\pm 2....\]
Also, in the third quadrant the value of \[-\cos \dfrac{\pi }{4}=\cos \left( \pi +\dfrac{\pi }{4} \right)\].
\[\begin{align}
& \Rightarrow \cos \theta =\cos \left( \pi +\dfrac{\pi }{4} \right) \\
& \Rightarrow \cos \theta =\cos \left( \dfrac{5\pi }{4} \right) \\
& \Rightarrow \theta =\dfrac{5\pi }{4} \\
\end{align}\]
\[\Rightarrow \theta =\dfrac{5\pi }{4}+2n\pi \], where \[n=0,\pm 1,\pm 2....\]
Hence the solution of equation (1) is given by,
\[\theta =\dfrac{\pi }{3},\dfrac{5\pi }{3},\dfrac{\pi }{4},\dfrac{7\pi }{4},\dfrac{3\pi }{4},\dfrac{5\pi }{4}.\]
Note: Alternatively, we could have factorized the equation \[4{{x}^{2}}-2\] by factorization Actually, we could have used factorization method in the equation \[4{{x}^{3}}-2{{x}^{2}}-2x+1\]. Since we are asked about the basic solution instead of the general solutions that why we write \[\theta =\dfrac{\pi }{2},\theta =\dfrac{2\pi }{3}\] and so on instead of \[\theta =\dfrac{\pi }{2}+2n\pi ,\theta =\dfrac{2\pi }{3}+2n\pi \].
Complete step-by-step answer:
Consider equation, \[\cos \theta +cos3\theta -\cos 2\theta =0.....(1)\]
Now we will apply the formula of \[\cos 2\theta =2{{\cos }^{2}}\theta -1\] and \[\cos 3\theta =4co{{s}^{3}}\theta -3\cos \theta \] in equation (1).
\[\begin{align}
& \Rightarrow \cos \theta +\left( 4co{{s}^{3}}\theta -3\cos \theta \right)-\left( 2{{\cos }^{2}}\theta -1 \right)=0 \\
& \Rightarrow \cos \theta +4{{\cos }^{3}}\theta -3\cos \theta -2{{\cos }^{2}}\theta +1=0 \\
\end{align}\]
Now we will arrange the expression in the order of degree of \[cos\theta \]. That is,
\[\begin{align}
& \Rightarrow 4{{\cos }^{3}}\theta -2{{\cos }^{2}}\theta -3\cos \theta +\cos \theta +1=0 \\
& \Rightarrow 4{{\cos }^{3}}\theta -2{{\cos }^{2}}\theta -2\cos \theta +1=0...(2) \\
\end{align}\]
Now we will put \[x=\cos \theta \] in equation (2). This will result into \[{{x}^{2}}={{\cos }^{2}}\theta \] and \[{{x}^{3}}={{\cos }^{3}}\theta \]. So we get a new expression, given by,
\[\begin{align}
& 4{{\cos }^{3}}\theta -2{{\cos }^{2}}\theta +1=0 \\
& 4{{x}^{3}}-2{{x}^{2}}-2x+1=0....(3) \\
\end{align}\]
Now we will use the hit and trial method and substitute the value of x in equation (3). First substitute x = 0 in equation (3).
\[4{{\left( 0 \right)}^{3}}-2{{\left( 0 \right)}^{2}}-2\left( 0 \right)+1=1\]
This value of x = 0 does not satisfy the equation (3) as the equation does not result into 0. Now we will apply the value \[x=\dfrac{1}{2}\] and substitute it in equation (3).
\[\Rightarrow 4{{\left( \dfrac{1}{2} \right)}^{3}}-2{{\left( \dfrac{1}{2} \right)}^{2}}-2\left( \dfrac{1}{2} \right)+1=\dfrac{4}{8}-\dfrac{2}{4}-1+1=0\]
This clearly implies that \[x=\dfrac{1}{2}\] is a factor of equation (3) or \[\left( x-\dfrac{1}{2} \right)\] is a factor.
Now we will divide \[x-\dfrac{1}{2}\] to equation (3).
Thus we get,
\[x-\dfrac{1}{2}\overset{4{{x}^{2}}-2}{\overline{\left){\begin{align}
& 4{{x}^{3}}-2{{x}^{2}}-2x+1 \\
& \underline{4{{x}^{3}}-2{{x}^{2}}} \\
& -2x+1 \\
& \underline{-2x+1} \\
& \underline{000000} \\
\end{align}}\right.}}\]
Clearly we factorize the equation \[4{{x}^{3}}-2{{x}^{2}}-2x+1\] into \[\left( x-\dfrac{1}{2} \right)\left( 4{{x}^{2}}-2 \right)\].
\[\left( x-\dfrac{1}{2} \right)\left( 4{{x}^{2}}-2 \right)=0\]
Now \[x-\dfrac{1}{2}=0\] or \[4{{x}^{2}}-2=0\].
Consider \[x-\dfrac{1}{2}=0\] or \[x=\dfrac{1}{2}\] since we know \[x=\cos \theta \]. \[\Rightarrow \cos \theta =\dfrac{1}{2}\].
We know that the \[\dfrac{1}{2}\] is the value of \[\cos \dfrac{\pi }{3}\].
\[\Rightarrow \cos \theta =\dfrac{\pi }{3}\].
The value of cos is positive in the first and fourth quadrant. In quadrant I, we have \[\cos \theta =\dfrac{\pi }{3}\].
\[\begin{align}
& \Rightarrow \cos \theta =\dfrac{\pi }{3} \\
& \Rightarrow \theta =\dfrac{\pi }{3} \\
\end{align}\]
\[\Rightarrow \theta =\dfrac{\pi }{3}+2n\pi \], where \[n=0,\pm 1,\pm 2....\]
In fourth quadrant, we have,
\[\begin{align}
& \cos \dfrac{\pi }{3}=\cos \left( 2\pi -\dfrac{\pi }{3} \right) \\
& \cos \theta =\cos \left( \dfrac{6\pi -\pi }{3} \right) \\
& \cos \theta =\cos \left( \dfrac{5\pi }{3} \right) \\
& \theta =\dfrac{5\pi }{3} \\
\end{align}\]
\[\theta =\dfrac{5\pi }{3}+2n\pi \], where \[n=0,\pm 1,\pm 2....\]
Now we will consider \[4{{x}^{2}}-2=0\].
\[\begin{align}
& 4{{x}^{2}}=2 \\
& {{x}^{2}}=\dfrac{1}{2} \\
& x=\pm \dfrac{1}{\sqrt{2}} \\
\end{align}\]
Since we know that \[\cos \theta =x\]. Thus we can write \[\cos \theta =\dfrac{1}{\sqrt{2}}\] and \[\cos \theta =\dfrac{-1}{\sqrt{2}}\].
Now we will consider, \[\cos \theta =\dfrac{1}{\sqrt{2}}\]. As we know that \[\cos \left( \dfrac{\pi }{4} \right)=\dfrac{1}{\sqrt{2}}\].
\[\Rightarrow \cos \theta =\cos \dfrac{\pi }{4}\]
The value of cos is positive in the first and fourth quadrant. So we first consider quadrant I.
\[\begin{align}
& \Rightarrow \cos \theta =\cos \dfrac{\pi }{4} \\
& \Rightarrow \theta =\dfrac{\pi }{4} \\
\end{align}\]
\[\Rightarrow \theta =\dfrac{\pi }{4}+2n\pi \], where \[n=0,\pm 1,\pm 2....\]
Now we will consider the fourth quadrant.
In the fourth quadrant, the value of \[\cos \dfrac{\pi }{4}=\cos \left( 2\pi -\dfrac{\pi }{4} \right)\].
\[\begin{align}
& \Rightarrow \cos \theta =\cos \left( 2\pi -\dfrac{\pi }{4} \right) \\
& \Rightarrow \cos \theta =\cos \left( \dfrac{8\pi -\pi }{4} \right) \\
& \Rightarrow \cos \theta =\cos \left( \dfrac{7\pi }{4} \right) \\
& \Rightarrow \theta =\dfrac{7\pi }{4} \\
\end{align}\]
\[\Rightarrow \theta =\dfrac{7\pi }{4}+2n\pi \], where \[n=0,\pm 1,\pm 2....\]
Now we will consider \[\cos \theta =\dfrac{-1}{\sqrt{2}}\] as the value of \[\dfrac{1}{\sqrt{2}}=\cos \dfrac{\pi }{4}\].
\[\Rightarrow \cos \theta =-\cos \dfrac{\pi }{4}\]
We know that the value of cos is negative in the second and third quadrant. So we will consider the second quadrant. In this quadrant, the value of \[-\cos \dfrac{\pi }{4}=\cos \left( \pi -\dfrac{\pi }{4} \right)\].
\[\begin{align}
& \Rightarrow cos\theta =cos\left( \pi -\dfrac{\pi }{4} \right) \\
& \Rightarrow cos\theta =cos\left( \dfrac{3\pi }{4} \right) \\
& \Rightarrow \theta =\dfrac{3\pi }{4} \\
\end{align}\]
\[\Rightarrow \theta =\dfrac{3\pi }{4}+2n\pi \], where \[n=0,\pm 1,\pm 2....\]
Also, in the third quadrant the value of \[-\cos \dfrac{\pi }{4}=\cos \left( \pi +\dfrac{\pi }{4} \right)\].
\[\begin{align}
& \Rightarrow \cos \theta =\cos \left( \pi +\dfrac{\pi }{4} \right) \\
& \Rightarrow \cos \theta =\cos \left( \dfrac{5\pi }{4} \right) \\
& \Rightarrow \theta =\dfrac{5\pi }{4} \\
\end{align}\]
\[\Rightarrow \theta =\dfrac{5\pi }{4}+2n\pi \], where \[n=0,\pm 1,\pm 2....\]
Hence the solution of equation (1) is given by,
\[\theta =\dfrac{\pi }{3},\dfrac{5\pi }{3},\dfrac{\pi }{4},\dfrac{7\pi }{4},\dfrac{3\pi }{4},\dfrac{5\pi }{4}.\]
Note: Alternatively, we could have factorized the equation \[4{{x}^{2}}-2\] by factorization Actually, we could have used factorization method in the equation \[4{{x}^{3}}-2{{x}^{2}}-2x+1\]. Since we are asked about the basic solution instead of the general solutions that why we write \[\theta =\dfrac{\pi }{2},\theta =\dfrac{2\pi }{3}\] and so on instead of \[\theta =\dfrac{\pi }{2}+2n\pi ,\theta =\dfrac{2\pi }{3}+2n\pi \].
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

