
Solve the equation $\cos 5x = \sin x$?
Answer
481.2k+ views
Hint: Here we will use two formulas two solve this question, one among them is $\sin x = \cos \left( {\dfrac{\pi }{2} - x} \right)$ and the other one is, if $\cos \theta = \cos \alpha \, \Rightarrow \,\,\,\theta = \alpha \pm 2n\pi ,\,where\,\,n \in Z$.
Here we have to find the particular solution and there can be two cases, one with plus sign and one with minus sign.
Complete step-by-step answer:
In the above question, it is given that $\cos 5x = \sin x$.
We know that
$\sin x = \cos \left( {\dfrac{\pi }{2} - x} \right)$
Here,
\[cos5x = sinx\;,{\text{ }}where\;0 \leqslant x \leqslant {360^ \circ }\]
$ \Rightarrow \cos 5x = \cos \left( {\dfrac{\pi }{2} - x} \right)$
Now, using the property, if$\cos \theta = \cos \alpha \, \Rightarrow \,\,\,\theta = \alpha \pm 2n\pi ,\,where\,\,n \in Z$
\[ \Rightarrow 5x = 2n\pi \pm \left( {\dfrac{\pi }{2} - x} \right),n \in Z.\]
Now, there are two solutions. One with plus sign and second one with minus sign.
\[ \Rightarrow 5x = 2n\pi + \dfrac{\pi }{2} - x\,\,or\,\,\,5x = 2n\pi - \dfrac{\pi }{2} + x,n \in Z\]
Now there are two cases:
Case I:
\[5x = 2n\pi + \dfrac{\pi }{2} - x,n \in Z\]
On transposing x, we get
\[ \Rightarrow 5x + x = 2k\pi + \dfrac{\pi }{2},n \in Z\]
\[ \Rightarrow 6x = (4k + 1)\dfrac{\pi }{2},n \in Z\]
\[ \Rightarrow x = (4k + 1)\dfrac{\pi }{{12}},k \in Z\]
\[n = 0 \Rightarrow x = \dfrac{\pi }{{12}}and\dfrac{\pi }{{12}} \in [0,2\pi ]\]
\[n = 1 \Rightarrow x = \dfrac{{5\pi }}{{12}}and\dfrac{{5\pi }}{{12}} \in [0,2\pi ]\]
\[n = 2 \Rightarrow x = \dfrac{{9\pi }}{{12}}and\dfrac{{9\pi }}{{12}} \in [0,2\pi ]\]
\[n = 3 \Rightarrow x = \dfrac{{13\pi }}{{12}}and\dfrac{{13\pi }}{{12}} \in [0,2\pi ]\] and so on…
Now,
Case II:
\[5x = 2n\pi - \dfrac{\pi }{2} + x,n \in Z\]
\[ \Rightarrow 5x - x = 2n\pi - \dfrac{\pi }{2},n \in Z\]
\[ \Rightarrow 4x = 2n\pi - \dfrac{\pi }{2},n \in Z\]
\[ \Rightarrow 4x = (4n - 1)\dfrac{\pi }{2},n \in Z\]
\[ \Rightarrow x = (4n - 1)\dfrac{\pi }{8},n \in Z\]
\[n = 0 \Rightarrow x = - \dfrac{\pi }{8}and - \dfrac{\pi }{8} \notin [0,2\pi ]\]
\[n = 1 \Rightarrow x = \dfrac{{3\pi }}{8}and\dfrac{{3\pi }}{8} \in [0,2\pi ]\]
\[n = 2 \Rightarrow x = \dfrac{{7\pi }}{8}and\dfrac{{7\pi }}{8} \in [0,2\pi ]\]
\[n = 3 \Rightarrow x = \dfrac{{11\pi }}{8}and\dfrac{{11\pi }}{8} \in [0,2\pi ]\] and so on…
Therefore, the solution of the given equation is:
\[x = \dfrac{\pi }{{12}},\dfrac{{5\pi }}{{12}},\dfrac{{9\pi }}{{12}},\dfrac{{13\pi }}{{12}},\dfrac{{17\pi }}{{12}},\dfrac{{21\pi }}{{12}},\dfrac{{3\pi }}{8},\dfrac{{7\pi }}{8},\dfrac{{11\pi }}{8},\dfrac{{15\pi }}{8}.\]
Note: In this question, we can also convert the equation in terms of sine function instead of cosine function and after that the whole procedure is the same for the whole question. There are some solutions which are not acceptable for a particular value of n in the given domain.
Here we have to find the particular solution and there can be two cases, one with plus sign and one with minus sign.
Complete step-by-step answer:
In the above question, it is given that $\cos 5x = \sin x$.
We know that
$\sin x = \cos \left( {\dfrac{\pi }{2} - x} \right)$
Here,
\[cos5x = sinx\;,{\text{ }}where\;0 \leqslant x \leqslant {360^ \circ }\]
$ \Rightarrow \cos 5x = \cos \left( {\dfrac{\pi }{2} - x} \right)$
Now, using the property, if$\cos \theta = \cos \alpha \, \Rightarrow \,\,\,\theta = \alpha \pm 2n\pi ,\,where\,\,n \in Z$
\[ \Rightarrow 5x = 2n\pi \pm \left( {\dfrac{\pi }{2} - x} \right),n \in Z.\]
Now, there are two solutions. One with plus sign and second one with minus sign.
\[ \Rightarrow 5x = 2n\pi + \dfrac{\pi }{2} - x\,\,or\,\,\,5x = 2n\pi - \dfrac{\pi }{2} + x,n \in Z\]
Now there are two cases:
Case I:
\[5x = 2n\pi + \dfrac{\pi }{2} - x,n \in Z\]
On transposing x, we get
\[ \Rightarrow 5x + x = 2k\pi + \dfrac{\pi }{2},n \in Z\]
\[ \Rightarrow 6x = (4k + 1)\dfrac{\pi }{2},n \in Z\]
\[ \Rightarrow x = (4k + 1)\dfrac{\pi }{{12}},k \in Z\]
\[n = 0 \Rightarrow x = \dfrac{\pi }{{12}}and\dfrac{\pi }{{12}} \in [0,2\pi ]\]
\[n = 1 \Rightarrow x = \dfrac{{5\pi }}{{12}}and\dfrac{{5\pi }}{{12}} \in [0,2\pi ]\]
\[n = 2 \Rightarrow x = \dfrac{{9\pi }}{{12}}and\dfrac{{9\pi }}{{12}} \in [0,2\pi ]\]
\[n = 3 \Rightarrow x = \dfrac{{13\pi }}{{12}}and\dfrac{{13\pi }}{{12}} \in [0,2\pi ]\] and so on…
Now,
Case II:
\[5x = 2n\pi - \dfrac{\pi }{2} + x,n \in Z\]
\[ \Rightarrow 5x - x = 2n\pi - \dfrac{\pi }{2},n \in Z\]
\[ \Rightarrow 4x = 2n\pi - \dfrac{\pi }{2},n \in Z\]
\[ \Rightarrow 4x = (4n - 1)\dfrac{\pi }{2},n \in Z\]
\[ \Rightarrow x = (4n - 1)\dfrac{\pi }{8},n \in Z\]
\[n = 0 \Rightarrow x = - \dfrac{\pi }{8}and - \dfrac{\pi }{8} \notin [0,2\pi ]\]
\[n = 1 \Rightarrow x = \dfrac{{3\pi }}{8}and\dfrac{{3\pi }}{8} \in [0,2\pi ]\]
\[n = 2 \Rightarrow x = \dfrac{{7\pi }}{8}and\dfrac{{7\pi }}{8} \in [0,2\pi ]\]
\[n = 3 \Rightarrow x = \dfrac{{11\pi }}{8}and\dfrac{{11\pi }}{8} \in [0,2\pi ]\] and so on…
Therefore, the solution of the given equation is:
\[x = \dfrac{\pi }{{12}},\dfrac{{5\pi }}{{12}},\dfrac{{9\pi }}{{12}},\dfrac{{13\pi }}{{12}},\dfrac{{17\pi }}{{12}},\dfrac{{21\pi }}{{12}},\dfrac{{3\pi }}{8},\dfrac{{7\pi }}{8},\dfrac{{11\pi }}{8},\dfrac{{15\pi }}{8}.\]
Note: In this question, we can also convert the equation in terms of sine function instead of cosine function and after that the whole procedure is the same for the whole question. There are some solutions which are not acceptable for a particular value of n in the given domain.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

