
Solve the equation \[8{{x}^{3}}-20{{x}^{2}}+6x+9=0\] given that the equation has multiple roots.
Answer
575.7k+ views
Hint: We need to solve the equation \[8{{x}^{3}}-20{{x}^{2}}+6x+9=0\]. Since the equation is of degree $3$, we need to find the factor of this equation using the trial and error method. The value of $x$ for which the given polynomial is zero will form one root and hence a factor will be obtained. Then divide the given polynomial by this factor using a long division method to get a quotient and remainder and write in the form $Dividend=divisor\times quotient+remainder$. Now rearrange the terms to get two more other factors. By substituting these factors to $0$, the values of $x$ will be obtained.
Complete step-by-step solution
We need to solve the equation \[8{{x}^{3}}-20{{x}^{2}}+6x+9=0\].
Let $p(x)=8{{x}^{3}}-20{{x}^{2}}+6x+9$ .
First, we have to find the factor of this equation. Since the given equation is of degree 3, there will be 3 factors and hence 3 roots.
The first root can be found out using the trial and error method, i.e. substitute some value for $x$ such that the result will be a zero.
Let us check the value of the equation at \[x=-\dfrac{1}{2}\] . So the given equation will be written as
\[p\left( -\dfrac{1}{2} \right)=8\times {{\left( -\dfrac{1}{2} \right)}^{3}}-20\times {{\left( -\dfrac{1}{2} \right)}^{2}}+6\times \left( -\dfrac{1}{2} \right)+9\]
By simplifying the above equation, we get
$p\left( -\dfrac{1}{2} \right)=8\times -\dfrac{1}{8}-20\times \dfrac{1}{4}-3+9$
When we solve this, we get
$p\left( -\dfrac{1}{2} \right)=-1-5+6=-1+1$
$\Rightarrow p\left( -\dfrac{1}{2} \right)=0$
Therefore, one factor of the given polynomial is $\left( x+\dfrac{1}{2} \right)$ .
Now, let us divide $p(x)=8{{x}^{3}}-20{{x}^{2}}+6x+9$by $\left( x+\dfrac{1}{2} \right)$ .
Step 1. Let us divide $8{{x}^{3}}$by $\left( x+\dfrac{1}{2} \right)$ .
We will get $8{{x}^{2}}$ as quotient . Now multiply this with $\left( x+\dfrac{1}{2} \right)$ to get \[8{{x}^{3}}+4{{x}^{2}}\].
Let us subtract \[8{{x}^{3}}+4{{x}^{2}}\] from $8{{x}^{3}}-20{{x}^{2}}+6x+9$ ,i.e
$8{{x}^{3}}-20{{x}^{2}}+6x+9-8{{x}^{3}}-4{{x}^{2}}=-24{{x}^{2}}+6x+9$
Step2: We should divide $-24{{x}^{2}}+6x+9$ by $\left( x+\dfrac{1}{2} \right)$ . The quotient will be $-24x$ and multiplying this with $\left( x+\dfrac{1}{2} \right)$ we will get $-24{{x}^{2}}-12x$ .
Now, we can subtract $-24{{x}^{2}}-12x$ from $-24{{x}^{2}}+6x+9$ , i.e
$-24{{x}^{2}}+6x+9+24{{x}^{2}}+12x=18x+9$
Step3: Let us divide $18x+9$ by $\left( x+\dfrac{1}{2} \right)$ . The quotient will be $18$ and multiplying this with $\left( x+\dfrac{1}{2} \right)$ we will get $18x+9$ .
Now, let subtract $18x+9$ from $18x+9$ , i.e
$18x+9-18x-9=0$
That is, the remainder is $0$ .
\[x + \dfrac{1}{2}\mathop{\left){\vphantom{1\begin{array}{l}
8{x^3} - 20{x^2} + 6x + 9\\
8{x^3} - 4{x^2}\\
\begin{array}{*{20}{c}}
- & +
\end{array}\\
\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\\
\begin{array}{*{20}{c}}
{}&\begin{array}{l}
- 24{x^2} + 6x + 9\\
- 24{x^2} - 12x\\
\begin{array}{*{20}{c}}
+ &{}& +
\end{array}\\
\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\\
\begin{array}{*{20}{c}}
{}&{}&\begin{array}{l}
18x + 9\\
18x + 9\\
\begin{array}{*{20}{c}}
- & -
\end{array}\\
\_\_\_\_\_\_\_\_\_\\
\begin{array}{*{20}{c}}
{}&{}&0
\end{array}
\end{array}
\end{array}
\end{array}
\end{array}
\end{array}}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{\begin{array}{l}
8{x^3} - 20{x^2} + 6x + 9\\
8{x^3} - 4{x^2}\\
\begin{array}{*{20}{c}}
- & +
\end{array}\\
\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\\
\begin{array}{*{20}{c}}
{}&\begin{array}{l}
- 24{x^2} + 6x + 9\\
- 24{x^2} - 12x\\
\begin{array}{*{20}{c}}
+ &{}& +
\end{array}\\
\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\\
\begin{array}{*{20}{c}}
{}&{}&\begin{array}{l}
18x + 9\\
18x + 9\\
\begin{array}{*{20}{c}}
- & -
\end{array}\\
\_\_\_\_\_\_\_\_\_\\
\begin{array}{*{20}{c}}
{}&{}&0
\end{array}
\end{array}
\end{array}
\end{array}
\end{array}
\end{array}}}}
\limits^{\displaystyle\,\,\, {8{x^2} - 24x + 18}}\]
So, when we divide $p(x)=8{{x}^{3}}-20{{x}^{2}}+6x+9$ by $\left( x+\dfrac{1}{2} \right)$ we get the quotient as $8{{x}^{2}}-24x+18$ .
Now, $Dividend=divisor\times quotient+remainder$
That is, $p(x)=\left( x+\dfrac{1}{2} \right)\times \left( 8{{x}^{2}}-24x+18 \right)+0$
$p(x)=\left( x+\dfrac{1}{2} \right)\times \left( 8{{x}^{2}}-24x+18 \right)$
Let us take 2 outside, we will get
$=\left( x+\dfrac{1}{2} \right)\times 2\left( 4{{x}^{2}}-12x+9 \right)$
$=\left( x+\dfrac{1}{2} \right)\times 2\left( {{\left( 2x \right)}^{2}}-2\times 2\times 3x+{{3}^{2}} \right)$
${{\left( 2x \right)}^{2}}-2\times 2\times 3x+{{3}^{2}}$ is of the form ${{(a+b)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}$ .
Therefore, we can write the above equation as
$p(x)=\left( x+\dfrac{1}{2} \right)\times 2{{\left( 2x+3 \right)}^{2}}$
$=\left( \dfrac{2x+1}{2} \right)\times 2{{\left( 2x+3 \right)}^{2}}$
Let us cancel $2$ from numerator and denominator, we get
$p(x)=\left( 2x+1 \right){{\left( 2x+3 \right)}^{2}}$
i.e. $p(x)=\left( 2x+1 \right)\left( 2x+3 \right)\left( 2x+3 \right)$
Now, we should substitute $p(x)=0$ .
i.e. $\left( 2x+1 \right)\left( 2x+3 \right)\left( 2x+3 \right)=0$
$\Rightarrow \left( 2x+1 \right)=0,\left( 2x+3 \right)=0,\left( 2x+3 \right)=0$
Let us evaluate the value of $x$ .
$\left( 2x+1 \right)=0\Rightarrow x=\dfrac{-1}{2}$
$\left( 2x+3 \right)=0\Rightarrow x=\dfrac{-3}{2}$
Hence the value of $x$ are $\dfrac{-1}{2},\dfrac{-3}{2},\dfrac{-3}{2}$.
Note: In questions having degree 3 or more, the same procedure is followed starting from the trial and error method to obtain a factor and doing the long division method and simplifying. Note that the result obtained by doing the trial and error method must be 0 and the value of $x$ chosen for the same, say $a$ must be written in the form $x+a$ if $a$ is negative and $x-a$ if $a$ is positive.
Complete step-by-step solution
We need to solve the equation \[8{{x}^{3}}-20{{x}^{2}}+6x+9=0\].
Let $p(x)=8{{x}^{3}}-20{{x}^{2}}+6x+9$ .
First, we have to find the factor of this equation. Since the given equation is of degree 3, there will be 3 factors and hence 3 roots.
The first root can be found out using the trial and error method, i.e. substitute some value for $x$ such that the result will be a zero.
Let us check the value of the equation at \[x=-\dfrac{1}{2}\] . So the given equation will be written as
\[p\left( -\dfrac{1}{2} \right)=8\times {{\left( -\dfrac{1}{2} \right)}^{3}}-20\times {{\left( -\dfrac{1}{2} \right)}^{2}}+6\times \left( -\dfrac{1}{2} \right)+9\]
By simplifying the above equation, we get
$p\left( -\dfrac{1}{2} \right)=8\times -\dfrac{1}{8}-20\times \dfrac{1}{4}-3+9$
When we solve this, we get
$p\left( -\dfrac{1}{2} \right)=-1-5+6=-1+1$
$\Rightarrow p\left( -\dfrac{1}{2} \right)=0$
Therefore, one factor of the given polynomial is $\left( x+\dfrac{1}{2} \right)$ .
Now, let us divide $p(x)=8{{x}^{3}}-20{{x}^{2}}+6x+9$by $\left( x+\dfrac{1}{2} \right)$ .
Step 1. Let us divide $8{{x}^{3}}$by $\left( x+\dfrac{1}{2} \right)$ .
We will get $8{{x}^{2}}$ as quotient . Now multiply this with $\left( x+\dfrac{1}{2} \right)$ to get \[8{{x}^{3}}+4{{x}^{2}}\].
Let us subtract \[8{{x}^{3}}+4{{x}^{2}}\] from $8{{x}^{3}}-20{{x}^{2}}+6x+9$ ,i.e
$8{{x}^{3}}-20{{x}^{2}}+6x+9-8{{x}^{3}}-4{{x}^{2}}=-24{{x}^{2}}+6x+9$
Step2: We should divide $-24{{x}^{2}}+6x+9$ by $\left( x+\dfrac{1}{2} \right)$ . The quotient will be $-24x$ and multiplying this with $\left( x+\dfrac{1}{2} \right)$ we will get $-24{{x}^{2}}-12x$ .
Now, we can subtract $-24{{x}^{2}}-12x$ from $-24{{x}^{2}}+6x+9$ , i.e
$-24{{x}^{2}}+6x+9+24{{x}^{2}}+12x=18x+9$
Step3: Let us divide $18x+9$ by $\left( x+\dfrac{1}{2} \right)$ . The quotient will be $18$ and multiplying this with $\left( x+\dfrac{1}{2} \right)$ we will get $18x+9$ .
Now, let subtract $18x+9$ from $18x+9$ , i.e
$18x+9-18x-9=0$
That is, the remainder is $0$ .
\[x + \dfrac{1}{2}\mathop{\left){\vphantom{1\begin{array}{l}
8{x^3} - 20{x^2} + 6x + 9\\
8{x^3} - 4{x^2}\\
\begin{array}{*{20}{c}}
- & +
\end{array}\\
\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\\
\begin{array}{*{20}{c}}
{}&\begin{array}{l}
- 24{x^2} + 6x + 9\\
- 24{x^2} - 12x\\
\begin{array}{*{20}{c}}
+ &{}& +
\end{array}\\
\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\\
\begin{array}{*{20}{c}}
{}&{}&\begin{array}{l}
18x + 9\\
18x + 9\\
\begin{array}{*{20}{c}}
- & -
\end{array}\\
\_\_\_\_\_\_\_\_\_\\
\begin{array}{*{20}{c}}
{}&{}&0
\end{array}
\end{array}
\end{array}
\end{array}
\end{array}
\end{array}}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{\begin{array}{l}
8{x^3} - 20{x^2} + 6x + 9\\
8{x^3} - 4{x^2}\\
\begin{array}{*{20}{c}}
- & +
\end{array}\\
\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\\
\begin{array}{*{20}{c}}
{}&\begin{array}{l}
- 24{x^2} + 6x + 9\\
- 24{x^2} - 12x\\
\begin{array}{*{20}{c}}
+ &{}& +
\end{array}\\
\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\\
\begin{array}{*{20}{c}}
{}&{}&\begin{array}{l}
18x + 9\\
18x + 9\\
\begin{array}{*{20}{c}}
- & -
\end{array}\\
\_\_\_\_\_\_\_\_\_\\
\begin{array}{*{20}{c}}
{}&{}&0
\end{array}
\end{array}
\end{array}
\end{array}
\end{array}
\end{array}}}}
\limits^{\displaystyle\,\,\, {8{x^2} - 24x + 18}}\]
So, when we divide $p(x)=8{{x}^{3}}-20{{x}^{2}}+6x+9$ by $\left( x+\dfrac{1}{2} \right)$ we get the quotient as $8{{x}^{2}}-24x+18$ .
Now, $Dividend=divisor\times quotient+remainder$
That is, $p(x)=\left( x+\dfrac{1}{2} \right)\times \left( 8{{x}^{2}}-24x+18 \right)+0$
$p(x)=\left( x+\dfrac{1}{2} \right)\times \left( 8{{x}^{2}}-24x+18 \right)$
Let us take 2 outside, we will get
$=\left( x+\dfrac{1}{2} \right)\times 2\left( 4{{x}^{2}}-12x+9 \right)$
$=\left( x+\dfrac{1}{2} \right)\times 2\left( {{\left( 2x \right)}^{2}}-2\times 2\times 3x+{{3}^{2}} \right)$
${{\left( 2x \right)}^{2}}-2\times 2\times 3x+{{3}^{2}}$ is of the form ${{(a+b)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}$ .
Therefore, we can write the above equation as
$p(x)=\left( x+\dfrac{1}{2} \right)\times 2{{\left( 2x+3 \right)}^{2}}$
$=\left( \dfrac{2x+1}{2} \right)\times 2{{\left( 2x+3 \right)}^{2}}$
Let us cancel $2$ from numerator and denominator, we get
$p(x)=\left( 2x+1 \right){{\left( 2x+3 \right)}^{2}}$
i.e. $p(x)=\left( 2x+1 \right)\left( 2x+3 \right)\left( 2x+3 \right)$
Now, we should substitute $p(x)=0$ .
i.e. $\left( 2x+1 \right)\left( 2x+3 \right)\left( 2x+3 \right)=0$
$\Rightarrow \left( 2x+1 \right)=0,\left( 2x+3 \right)=0,\left( 2x+3 \right)=0$
Let us evaluate the value of $x$ .
$\left( 2x+1 \right)=0\Rightarrow x=\dfrac{-1}{2}$
$\left( 2x+3 \right)=0\Rightarrow x=\dfrac{-3}{2}$
Hence the value of $x$ are $\dfrac{-1}{2},\dfrac{-3}{2},\dfrac{-3}{2}$.
Note: In questions having degree 3 or more, the same procedure is followed starting from the trial and error method to obtain a factor and doing the long division method and simplifying. Note that the result obtained by doing the trial and error method must be 0 and the value of $x$ chosen for the same, say $a$ must be written in the form $x+a$ if $a$ is negative and $x-a$ if $a$ is positive.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

