
Solve the equation \[2{{y}^{3}}\,+\,{{y}^{2}}\,-\,2y\,-1\]
Answer
606.3k+ views
Hint: First use hit and trial method, in which we will put \[-1,\text{ }+1,\text{ }-2,\]…..(factorization method)
Which number satisfies the equation that will be the factor of this equation. After that divide the equation with this factor you will get a quadratic equation. Then use the middle term split to get two factors.
Complete step-by-step answer:
\[2{{y}^{3}}\,+\,{{y}^{2}}\,-\,2y\,-1\]
Put 1
\[2{{(1)}^{3}}\,+\,{{(1)}^{2}}\,-\,2(1)\,-1\]
\[2\,+\,3\,-\,2\,-\,1\]
\[=\,0\]
So is the factor of this equation.
Now, \[\begin{align}
& y\,=\,1 \\
& y\,-1\,=\,0 \\
\end{align}\]
\[y-1\overset{2{{y}^{2}}+\,3y\,+1}{\overline{\left){\begin{align}
& 2{{y}^{3}}\,+\,{{y}^{2}}\,-\,2y\,-1 \\
& \dfrac{2{{y}^{3}}\,-\,2{{y}^{2}}}{\begin{align}
& 3{{y}^{2}}\,-\,2y\,-\,1 \\
& \dfrac{3{{y}^{2}}\,-\,3y}{\begin{align}
& y\,-\,1 \\
& \dfrac{y\,-\,1}{0} \\
\end{align}} \\
\end{align}} \\
& \\
\end{align}}\right.}}\]
Now by dividing we get a quadratic equation:
\[2{{y}^{2}}\,+\,3y\,+\,1\]
\[\begin{align}
& 2{{y}^{2}}+\,2y\,+\,y\,+\,1 \\
& 2y\,(y+1)\,+1(y+1) \\
& (2y+1)\,(y+1) \\
& 2y\,=\,1\,\,\,\,\,\,\,\,y+1=0 \\
& y\,=\,\dfrac{1}{2}\,\,\,\,\,\,\,\,\,y\,=\,-1 \\
& \\
\end{align}\]
So there are three solutions of this question \[1,\,\dfrac{1}{2},\,-1\]
Note: If the power of question is three then there are three solutions to the question. In quadratic equations we can find a solution simply by the middle term split method but for cubic equations always use the hit and trial method and factorization method to find the answer.
Which number satisfies the equation that will be the factor of this equation. After that divide the equation with this factor you will get a quadratic equation. Then use the middle term split to get two factors.
Complete step-by-step answer:
\[2{{y}^{3}}\,+\,{{y}^{2}}\,-\,2y\,-1\]
Put 1
\[2{{(1)}^{3}}\,+\,{{(1)}^{2}}\,-\,2(1)\,-1\]
\[2\,+\,3\,-\,2\,-\,1\]
\[=\,0\]
So is the factor of this equation.
Now, \[\begin{align}
& y\,=\,1 \\
& y\,-1\,=\,0 \\
\end{align}\]
\[y-1\overset{2{{y}^{2}}+\,3y\,+1}{\overline{\left){\begin{align}
& 2{{y}^{3}}\,+\,{{y}^{2}}\,-\,2y\,-1 \\
& \dfrac{2{{y}^{3}}\,-\,2{{y}^{2}}}{\begin{align}
& 3{{y}^{2}}\,-\,2y\,-\,1 \\
& \dfrac{3{{y}^{2}}\,-\,3y}{\begin{align}
& y\,-\,1 \\
& \dfrac{y\,-\,1}{0} \\
\end{align}} \\
\end{align}} \\
& \\
\end{align}}\right.}}\]
Now by dividing we get a quadratic equation:
\[2{{y}^{2}}\,+\,3y\,+\,1\]
\[\begin{align}
& 2{{y}^{2}}+\,2y\,+\,y\,+\,1 \\
& 2y\,(y+1)\,+1(y+1) \\
& (2y+1)\,(y+1) \\
& 2y\,=\,1\,\,\,\,\,\,\,\,y+1=0 \\
& y\,=\,\dfrac{1}{2}\,\,\,\,\,\,\,\,\,y\,=\,-1 \\
& \\
\end{align}\]
So there are three solutions of this question \[1,\,\dfrac{1}{2},\,-1\]
Note: If the power of question is three then there are three solutions to the question. In quadratic equations we can find a solution simply by the middle term split method but for cubic equations always use the hit and trial method and factorization method to find the answer.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Who is eligible for RTE class 9 social science CBSE

Which places in India experience sunrise first and class 9 social science CBSE

What is pollution? How many types of pollution? Define it

Name 10 Living and Non living things class 9 biology CBSE

