
Solve the differential equation $\dfrac{dy}{dx}=\tan \left( x+y \right)$
Answer
605.1k+ views
- Hint:This differential equation can be reduced to a variable separable form by putting a particular term equal to a variable. Some formulas and identities used in this question are: -
${{\sec }^{2}}t=1+{{\tan }^{2}}t;\ \int{\dfrac{dx}{x}=\ln x+c}$
\[\dfrac{d}{dx}\left( \tan t \right)={{\sec }^{2}}tdt;\ \int{\dfrac{dx}{1+{{x}^{2}}}={{\tan }^{-1}}x+c}\]
Complete step-by-step solution -
The differential equation given in the question is not of the form $f\left( x \right)dx=g\left( y \right)dy$. So, we cannot just cross multiply terms. To make it of the form $f\left( x \right)dx=g\left( y \right)dy$i.e. of the variable separable from, we have to make necessary i.e. of the variable separable from, we have to make necessary substitutions. Thus, now we will start converting into a variable separable form; in the question, it is given that,
$\dfrac{dy}{dx}=\tan \left( x+y \right)$ …………………………….(i)
Now, we will substitute $\left( x+y \right)$ to t i.e.,
$x+y=t$ ……………………………………………(ii)
We will differentiate both sides of the equation with respect to x i.e.,
$\dfrac{dx}{dx}+\dfrac{dy}{dx}=\dfrac{dt}{dx}$
$\Rightarrow 1+\dfrac{dy}{dx}=\dfrac{dt}{dx}$
$\Rightarrow \dfrac{dy}{dx}=\dfrac{dt}{dx}-1$ …………………………………………(iii)
Now we will put the value of $\left( x+y \right)$and $\dfrac{dy}{dx}$ from equation (ii)and equation (iii) to equation (i). After doing this we will get,
$\dfrac{dt}{dx}-1=\tan t$
$\dfrac{dt}{dx}=\tan t+1$ …………………………………………(iv)
Now equation (iv) is variable separable form so we can simply cross multiply the equation. After doing this, we will get,
$\dfrac{dt}{1+\tan t}=dx$ ………………………………………….(v)
Now, we will integrate the equation (v);
$\int{\dfrac{dt}{1+\tan t}}=\int{dx}+c$ ………………………………….(vi)
Now, we will put $\tan t=p$. We will differentiate both sides. After doing this, we will get: -
${{\sec }^{2}}tdt=dp$
$\Rightarrow dt=\dfrac{dp}{{{\sec }^{2}}t}$
$\Rightarrow dt=\dfrac{dp}{1+{{\tan }^{2}}t}$ [from the identity in the hint]
$\Rightarrow dt=\dfrac{dp}{1+{{p}^{2}}}$
Putting the values in (vi), we get
$\int{\dfrac{dt}{\left( 1+{{p}^{2}} \right)\left( 1+p \right)}}=\int{dx}+c$
Now, we will separately integrate the term on LHS:
$\int{\dfrac{dt}{\left( 1+{{p}^{2}} \right)\left( 1+p \right)}}$
By using partial fraction, we get
$\int{\dfrac{dp}{\left( 1+{{p}^{2}} \right)\left( 1+p \right)}}=\int{\dfrac{Adp}{1+p}+\int{\dfrac{\left( Bp+c \right)dp}{1+{{p}^{2}}}}}$ ……………………………(vii)
Now we have to find the values of A, B and C let us see, how this can be done: -
$\int{\dfrac{dp}{\left( 1+{{p}^{2}} \right)\left( 1+p \right)}}=\int{\dfrac{\left( A+A{{p}^{2}}+Bp+C+B{{p}^{2}}+Cp \right)dp}{\left( 1+p \right)\left( 1+{{p}^{2}} \right)}}$
So, we get; $A+C=1$
$A+B=0$
$B+C=0$
From the equations, we get: - $A=\dfrac{1}{2},B=\dfrac{-1}{2},C=\dfrac{1}{2}$
We will put these values in equation (vii). After doing this, we will get: -
$\int{\dfrac{dp}{\left( 1+{{p}^{2}} \right)\left( 1+p \right)}}=\dfrac{1}{2}\int{\dfrac{dp}{\left( 1+p \right)}+\dfrac{1}{2}\int{\dfrac{\left( -p+1 \right)dp}{\left( 1+{{p}^{2}} \right)}}}$
$=\dfrac{1}{2}\ln \left( 1+p \right)+\dfrac{1}{2}{{\tan }^{-1}}p-\dfrac{1}{4}\ln \left( 1+{{p}^{2}} \right)$
We will now put this value in the above differential equation: -
$\dfrac{1}{2}\ln \left( 1+p \right)+\dfrac{1}{2}{{\tan }^{-1}}p-\dfrac{1}{4}\ln \left( 1+{{p}^{2}} \right)=x+c$
We will now put the value back to $p=\tan t$, after doing this, we will get: -
$\dfrac{1}{2}\ln \left( 1+\tan t \right)+\dfrac{1}{2}t-\dfrac{1}{4}\ln \left( 1+{{\tan }^{2}}p \right)=x+c$
Now, we know that $t=x+y$. After substituting this, we get;
$\dfrac{1}{2}\ln \left( 1+\tan \left( x+y \right) \right)+\dfrac{1}{2}\left( x+y \right)-\dfrac{1}{4}\ln \left( 1+{{\tan }^{2}}\left( x+y \right) \right)-x=c$
$\Rightarrow \ln \left( 1+\tan \left( x+y \right) \right)+\left( y-x \right)-\dfrac{1}{2}\ln \left( 1+{{\tan }^{2}}\left( x+y \right) \right)=c$
This is the required solution of our differential equation.
Note: In the question, we are not given the values of x and y which satisfy the function. So, we cannot eliminate c from the required solution. Thus, this is a general solution where c can have any value.
${{\sec }^{2}}t=1+{{\tan }^{2}}t;\ \int{\dfrac{dx}{x}=\ln x+c}$
\[\dfrac{d}{dx}\left( \tan t \right)={{\sec }^{2}}tdt;\ \int{\dfrac{dx}{1+{{x}^{2}}}={{\tan }^{-1}}x+c}\]
Complete step-by-step solution -
The differential equation given in the question is not of the form $f\left( x \right)dx=g\left( y \right)dy$. So, we cannot just cross multiply terms. To make it of the form $f\left( x \right)dx=g\left( y \right)dy$i.e. of the variable separable from, we have to make necessary i.e. of the variable separable from, we have to make necessary substitutions. Thus, now we will start converting into a variable separable form; in the question, it is given that,
$\dfrac{dy}{dx}=\tan \left( x+y \right)$ …………………………….(i)
Now, we will substitute $\left( x+y \right)$ to t i.e.,
$x+y=t$ ……………………………………………(ii)
We will differentiate both sides of the equation with respect to x i.e.,
$\dfrac{dx}{dx}+\dfrac{dy}{dx}=\dfrac{dt}{dx}$
$\Rightarrow 1+\dfrac{dy}{dx}=\dfrac{dt}{dx}$
$\Rightarrow \dfrac{dy}{dx}=\dfrac{dt}{dx}-1$ …………………………………………(iii)
Now we will put the value of $\left( x+y \right)$and $\dfrac{dy}{dx}$ from equation (ii)and equation (iii) to equation (i). After doing this we will get,
$\dfrac{dt}{dx}-1=\tan t$
$\dfrac{dt}{dx}=\tan t+1$ …………………………………………(iv)
Now equation (iv) is variable separable form so we can simply cross multiply the equation. After doing this, we will get,
$\dfrac{dt}{1+\tan t}=dx$ ………………………………………….(v)
Now, we will integrate the equation (v);
$\int{\dfrac{dt}{1+\tan t}}=\int{dx}+c$ ………………………………….(vi)
Now, we will put $\tan t=p$. We will differentiate both sides. After doing this, we will get: -
${{\sec }^{2}}tdt=dp$
$\Rightarrow dt=\dfrac{dp}{{{\sec }^{2}}t}$
$\Rightarrow dt=\dfrac{dp}{1+{{\tan }^{2}}t}$ [from the identity in the hint]
$\Rightarrow dt=\dfrac{dp}{1+{{p}^{2}}}$
Putting the values in (vi), we get
$\int{\dfrac{dt}{\left( 1+{{p}^{2}} \right)\left( 1+p \right)}}=\int{dx}+c$
Now, we will separately integrate the term on LHS:
$\int{\dfrac{dt}{\left( 1+{{p}^{2}} \right)\left( 1+p \right)}}$
By using partial fraction, we get
$\int{\dfrac{dp}{\left( 1+{{p}^{2}} \right)\left( 1+p \right)}}=\int{\dfrac{Adp}{1+p}+\int{\dfrac{\left( Bp+c \right)dp}{1+{{p}^{2}}}}}$ ……………………………(vii)
Now we have to find the values of A, B and C let us see, how this can be done: -
$\int{\dfrac{dp}{\left( 1+{{p}^{2}} \right)\left( 1+p \right)}}=\int{\dfrac{\left( A+A{{p}^{2}}+Bp+C+B{{p}^{2}}+Cp \right)dp}{\left( 1+p \right)\left( 1+{{p}^{2}} \right)}}$
So, we get; $A+C=1$
$A+B=0$
$B+C=0$
From the equations, we get: - $A=\dfrac{1}{2},B=\dfrac{-1}{2},C=\dfrac{1}{2}$
We will put these values in equation (vii). After doing this, we will get: -
$\int{\dfrac{dp}{\left( 1+{{p}^{2}} \right)\left( 1+p \right)}}=\dfrac{1}{2}\int{\dfrac{dp}{\left( 1+p \right)}+\dfrac{1}{2}\int{\dfrac{\left( -p+1 \right)dp}{\left( 1+{{p}^{2}} \right)}}}$
$=\dfrac{1}{2}\ln \left( 1+p \right)+\dfrac{1}{2}{{\tan }^{-1}}p-\dfrac{1}{4}\ln \left( 1+{{p}^{2}} \right)$
We will now put this value in the above differential equation: -
$\dfrac{1}{2}\ln \left( 1+p \right)+\dfrac{1}{2}{{\tan }^{-1}}p-\dfrac{1}{4}\ln \left( 1+{{p}^{2}} \right)=x+c$
We will now put the value back to $p=\tan t$, after doing this, we will get: -
$\dfrac{1}{2}\ln \left( 1+\tan t \right)+\dfrac{1}{2}t-\dfrac{1}{4}\ln \left( 1+{{\tan }^{2}}p \right)=x+c$
Now, we know that $t=x+y$. After substituting this, we get;
$\dfrac{1}{2}\ln \left( 1+\tan \left( x+y \right) \right)+\dfrac{1}{2}\left( x+y \right)-\dfrac{1}{4}\ln \left( 1+{{\tan }^{2}}\left( x+y \right) \right)-x=c$
$\Rightarrow \ln \left( 1+\tan \left( x+y \right) \right)+\left( y-x \right)-\dfrac{1}{2}\ln \left( 1+{{\tan }^{2}}\left( x+y \right) \right)=c$
This is the required solution of our differential equation.
Note: In the question, we are not given the values of x and y which satisfy the function. So, we cannot eliminate c from the required solution. Thus, this is a general solution where c can have any value.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

