
Solve the below parts:
1. Find an irrational number between 0.1 and \[\dfrac{2}{7}\].
2. Find two irrational numbers between \[\sqrt{2}\] and \[\sqrt{7}\].
Answer
545.1k+ views
Hint: In this problem, we have to find the irrational numbers between given two numbers. We know that irrational numbers should have a non-terminating and non-repeating expansion. We can first write the decimal form for the given fraction or root value. We can then compare the given two numbers one by one to find the irrational number between the given numbers.
Complete step by step solution:
1. To find an irrational number between 0.1 and \[\dfrac{2}{7}\].
We know that the given two numbers are,0.1 and \[\dfrac{2}{7}\].
We can now write the decimal form of the given fraction \[\dfrac{2}{7}\].
By dividing the number 2 by the number 7, we will get
\[\Rightarrow \dfrac{2}{7}=0.285714....\]
Now we have to find the irrational number between 0.1 and 0.2.
We can see that irrational numbers between 0.1 and 0.285714… should have a non-terminating and non-repeating expansion.
Such that, 0.150150015000 ……. is an irrational number between 0.1 and \[\dfrac{2}{7}\].
Therefore, an irrational number between 0.1 and \[\dfrac{2}{7}\] is 0.150150015000…
2. To find two irrational numbers between \[\sqrt{2}\] and \[\sqrt{7}\].
We know that the given numbers are \[\sqrt{2}\] and \[\sqrt{7}\].
We know that the value of \[\sqrt{2}\] is 1.14 and \[\sqrt{7}\] is 2.64
We also know that \[\sqrt{3}\] and \[\sqrt{5}\] have non-terminating and non-repeating values.
Where,
\[\begin{align}
& \sqrt{3}=1.7320..... \\
& \sqrt{5}=2.2360..... \\
\end{align}\]
The above two root numbers are irrational numbers, as it has non-terminating and non-repeating values.
Therefore, two irrational numbers between \[\sqrt{2}\] and \[\sqrt{7}\] are \[\sqrt{3}\] and \[\sqrt{5}\].
Note: We should always remember that an irrational number are real numbers which have neither terminating and non-repeating numbers and it cannot be expressed as a ratio of two numbers. We should also know some root values to solve these types of problems.
Complete step by step solution:
1. To find an irrational number between 0.1 and \[\dfrac{2}{7}\].
We know that the given two numbers are,0.1 and \[\dfrac{2}{7}\].
We can now write the decimal form of the given fraction \[\dfrac{2}{7}\].
By dividing the number 2 by the number 7, we will get
\[\Rightarrow \dfrac{2}{7}=0.285714....\]
Now we have to find the irrational number between 0.1 and 0.2.
We can see that irrational numbers between 0.1 and 0.285714… should have a non-terminating and non-repeating expansion.
Such that, 0.150150015000 ……. is an irrational number between 0.1 and \[\dfrac{2}{7}\].
Therefore, an irrational number between 0.1 and \[\dfrac{2}{7}\] is 0.150150015000…
2. To find two irrational numbers between \[\sqrt{2}\] and \[\sqrt{7}\].
We know that the given numbers are \[\sqrt{2}\] and \[\sqrt{7}\].
We know that the value of \[\sqrt{2}\] is 1.14 and \[\sqrt{7}\] is 2.64
We also know that \[\sqrt{3}\] and \[\sqrt{5}\] have non-terminating and non-repeating values.
Where,
\[\begin{align}
& \sqrt{3}=1.7320..... \\
& \sqrt{5}=2.2360..... \\
\end{align}\]
The above two root numbers are irrational numbers, as it has non-terminating and non-repeating values.
Therefore, two irrational numbers between \[\sqrt{2}\] and \[\sqrt{7}\] are \[\sqrt{3}\] and \[\sqrt{5}\].
Note: We should always remember that an irrational number are real numbers which have neither terminating and non-repeating numbers and it cannot be expressed as a ratio of two numbers. We should also know some root values to solve these types of problems.
Recently Updated Pages
Master Class 8 Social Science: Engaging Questions & Answers for Success

Master Class 8 English: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 Maths: Engaging Questions & Answers for Success

Master Class 8 Science: Engaging Questions & Answers for Success

Master Class 7 English: Engaging Questions & Answers for Success

Trending doubts
Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Who is eligible for RTE class 9 social science CBSE

Which places in India experience sunrise first and class 9 social science CBSE

What is pollution? How many types of pollution? Define it

Name 10 Living and Non living things class 9 biology CBSE


