
Solve ${{\tan }^{-1}}\left[ \dfrac{\cos x}{1+\sin x} \right]$.
Answer
512.7k+ views
Hint: For solving this question you should know about the general formulas of trigonometry for 2a angles. In this problem we will simply divide the angle $x$ as $\dfrac{2x}{2}$ and thus it will be in the form of angle 2a. Then we will use the formulas of $\cos 2a$ and $\sin 2a$ to solve this problem. Then we divide it by $\cos \dfrac{x}{2}$ and solve it forward.
Complete step by step answer:
According to the problem, we have to solve the expression ${{\tan }^{-1}}\left[ \dfrac{\cos x}{1+\sin x} \right]$. We know that,
$\cos 2x={{\cos }^{2}}x-{{\sin }^{2}}x$
Replacing $x$ by $\dfrac{x}{2}$, we get,
$\begin{align}
& \cos \left( \dfrac{2x}{2} \right)={{\cos }^{2}}\dfrac{x}{2}-{{\sin }^{2}}\dfrac{x}{2} \\
& \Rightarrow \cos x={{\cos }^{2}}\dfrac{x}{2}-{{\sin }^{2}}\dfrac{x}{2}\ldots \ldots \ldots \left( i \right) \\
\end{align}$
We also know that,
$\sin 2x=2\sin x\cos x$
Replacing $x$ by $\dfrac{x}{2}$, we get,
$\begin{align}
& \sin \left( \dfrac{2x}{2} \right)=2\sin \dfrac{x}{2}\cos \dfrac{x}{2} \\
& \Rightarrow \sin x=2\sin \dfrac{x}{2}\cos \dfrac{x}{2}\ldots \ldots \ldots \left( ii \right) \\
\end{align}$
From equations (i) and (ii), we get,
$\begin{align}
& {{\tan }^{-1}}\left[ \dfrac{\cos x}{1+\sin x} \right]={{\tan }^{-1}}\left[ \dfrac{{{\cos }^{2}}\dfrac{x}{2}-{{\sin }^{2}}\dfrac{x}{2}}{1+\left( 2\sin \dfrac{x}{2}\cos \dfrac{x}{2} \right)} \right] \\
& \Rightarrow {{\tan }^{-1}}\left[ \dfrac{\cos x}{1+\sin x} \right]={{\tan }^{-1}}\left[ \dfrac{{{\cos }^{2}}\left( \dfrac{x}{2} \right)-{{\sin }^{2}}\left( \dfrac{x}{2} \right)}{1+2\sin \dfrac{x}{2}\cos \dfrac{x}{2}} \right] \\
\end{align}$
As ${{\sin }^{2}}x+{{\cos }^{2}}x=1$
Replacing $x$ by $\dfrac{x}{2}$, we get,
${{\sin }^{2}}\dfrac{x}{2}+{{\cos }^{2}}\dfrac{x}{2}=1$
So, we can also write it as:
\[\begin{align}
& ={{\tan }^{-1}}\left[ \dfrac{{{\cos }^{2}}\left( \dfrac{x}{2} \right)-{{\sin }^{2}}\left( \dfrac{x}{2} \right)}{{{\cos }^{2}}\dfrac{x}{2}+{{\sin }^{2}}\dfrac{x}{2}+2\sin \dfrac{x}{2}\cos \dfrac{x}{2}} \right] \\
& ={{\tan }^{-1}}\left[ \dfrac{\left( \cos \dfrac{x}{2}+\sin \dfrac{x}{2} \right)\left( \cos \dfrac{x}{2}-\sin \dfrac{x}{2} \right)}{{{\left( \cos \dfrac{x}{2}+\sin \dfrac{x}{2} \right)}^{2}}} \right] \\
& ={{\tan }^{-1}}\left[ \dfrac{\cos \dfrac{x}{2}-\sin \dfrac{x}{2}}{\cos \dfrac{x}{2}+\sin \dfrac{x}{2}} \right] \\
\end{align}\]
Dividing the numerator and denominator by $\cos \dfrac{x}{2}$ we get,
\[\begin{align}
& ={{\tan }^{-1}}\left[ \dfrac{\dfrac{\cos \dfrac{x}{2}}{\cos \dfrac{x}{2}}-\dfrac{\sin \dfrac{x}{2}}{\cos \dfrac{x}{2}}}{\dfrac{\cos \dfrac{x}{2}}{\cos \dfrac{x}{2}}+\dfrac{\sin \dfrac{x}{2}}{\cos \dfrac{x}{2}}} \right] \\
& ={{\tan }^{-1}}\left[ \dfrac{1-\tan \dfrac{x}{2}}{1+\tan \dfrac{x}{2}} \right] \\
& ={{\tan }^{-1}}\left[ \dfrac{\tan \dfrac{\pi }{4}-\tan \dfrac{x}{2}}{1+\tan \dfrac{\pi }{4}.\tan \dfrac{x}{2}} \right] \\
\end{align}\]
Using $\tan \left( x-y \right)=\dfrac{\tan x-\tan y}{1+\tan x\tan y}$, we get,
$\begin{align}
& ={{\tan }^{-1}}\left[ \tan \left( \dfrac{\pi }{4}-\dfrac{x}{2} \right) \right] \\
& =\dfrac{\pi }{4}-\dfrac{x}{2} \\
\end{align}$
So, the final answer is $\dfrac{\pi }{4}-\dfrac{x}{2}$.
Note: While solving these type of questions you have to be careful about the formulas of $\tan \left( x\pm y \right)$ or $\sin 2x$ and $\cos 2x$, because if any one of them will be wrong or any sign will be wrong, then we can solve the questions completely, but the answer will be totally wrong.
Complete step by step answer:
According to the problem, we have to solve the expression ${{\tan }^{-1}}\left[ \dfrac{\cos x}{1+\sin x} \right]$. We know that,
$\cos 2x={{\cos }^{2}}x-{{\sin }^{2}}x$
Replacing $x$ by $\dfrac{x}{2}$, we get,
$\begin{align}
& \cos \left( \dfrac{2x}{2} \right)={{\cos }^{2}}\dfrac{x}{2}-{{\sin }^{2}}\dfrac{x}{2} \\
& \Rightarrow \cos x={{\cos }^{2}}\dfrac{x}{2}-{{\sin }^{2}}\dfrac{x}{2}\ldots \ldots \ldots \left( i \right) \\
\end{align}$
We also know that,
$\sin 2x=2\sin x\cos x$
Replacing $x$ by $\dfrac{x}{2}$, we get,
$\begin{align}
& \sin \left( \dfrac{2x}{2} \right)=2\sin \dfrac{x}{2}\cos \dfrac{x}{2} \\
& \Rightarrow \sin x=2\sin \dfrac{x}{2}\cos \dfrac{x}{2}\ldots \ldots \ldots \left( ii \right) \\
\end{align}$
From equations (i) and (ii), we get,
$\begin{align}
& {{\tan }^{-1}}\left[ \dfrac{\cos x}{1+\sin x} \right]={{\tan }^{-1}}\left[ \dfrac{{{\cos }^{2}}\dfrac{x}{2}-{{\sin }^{2}}\dfrac{x}{2}}{1+\left( 2\sin \dfrac{x}{2}\cos \dfrac{x}{2} \right)} \right] \\
& \Rightarrow {{\tan }^{-1}}\left[ \dfrac{\cos x}{1+\sin x} \right]={{\tan }^{-1}}\left[ \dfrac{{{\cos }^{2}}\left( \dfrac{x}{2} \right)-{{\sin }^{2}}\left( \dfrac{x}{2} \right)}{1+2\sin \dfrac{x}{2}\cos \dfrac{x}{2}} \right] \\
\end{align}$
As ${{\sin }^{2}}x+{{\cos }^{2}}x=1$
Replacing $x$ by $\dfrac{x}{2}$, we get,
${{\sin }^{2}}\dfrac{x}{2}+{{\cos }^{2}}\dfrac{x}{2}=1$
So, we can also write it as:
\[\begin{align}
& ={{\tan }^{-1}}\left[ \dfrac{{{\cos }^{2}}\left( \dfrac{x}{2} \right)-{{\sin }^{2}}\left( \dfrac{x}{2} \right)}{{{\cos }^{2}}\dfrac{x}{2}+{{\sin }^{2}}\dfrac{x}{2}+2\sin \dfrac{x}{2}\cos \dfrac{x}{2}} \right] \\
& ={{\tan }^{-1}}\left[ \dfrac{\left( \cos \dfrac{x}{2}+\sin \dfrac{x}{2} \right)\left( \cos \dfrac{x}{2}-\sin \dfrac{x}{2} \right)}{{{\left( \cos \dfrac{x}{2}+\sin \dfrac{x}{2} \right)}^{2}}} \right] \\
& ={{\tan }^{-1}}\left[ \dfrac{\cos \dfrac{x}{2}-\sin \dfrac{x}{2}}{\cos \dfrac{x}{2}+\sin \dfrac{x}{2}} \right] \\
\end{align}\]
Dividing the numerator and denominator by $\cos \dfrac{x}{2}$ we get,
\[\begin{align}
& ={{\tan }^{-1}}\left[ \dfrac{\dfrac{\cos \dfrac{x}{2}}{\cos \dfrac{x}{2}}-\dfrac{\sin \dfrac{x}{2}}{\cos \dfrac{x}{2}}}{\dfrac{\cos \dfrac{x}{2}}{\cos \dfrac{x}{2}}+\dfrac{\sin \dfrac{x}{2}}{\cos \dfrac{x}{2}}} \right] \\
& ={{\tan }^{-1}}\left[ \dfrac{1-\tan \dfrac{x}{2}}{1+\tan \dfrac{x}{2}} \right] \\
& ={{\tan }^{-1}}\left[ \dfrac{\tan \dfrac{\pi }{4}-\tan \dfrac{x}{2}}{1+\tan \dfrac{\pi }{4}.\tan \dfrac{x}{2}} \right] \\
\end{align}\]
Using $\tan \left( x-y \right)=\dfrac{\tan x-\tan y}{1+\tan x\tan y}$, we get,
$\begin{align}
& ={{\tan }^{-1}}\left[ \tan \left( \dfrac{\pi }{4}-\dfrac{x}{2} \right) \right] \\
& =\dfrac{\pi }{4}-\dfrac{x}{2} \\
\end{align}$
So, the final answer is $\dfrac{\pi }{4}-\dfrac{x}{2}$.
Note: While solving these type of questions you have to be careful about the formulas of $\tan \left( x\pm y \right)$ or $\sin 2x$ and $\cos 2x$, because if any one of them will be wrong or any sign will be wrong, then we can solve the questions completely, but the answer will be totally wrong.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

