
Solve \[\sin \left( {2{{\sin }^{ - 1}}\sqrt {\dfrac{{63}}{{65}}} } \right) = \]
A.\[\dfrac{{2\sqrt {126} }}{{65}}\]
B.\[\dfrac{{4\sqrt {126} }}{{65}}\]
C.\[\dfrac{{8\sqrt {63} }}{{65}}\]
D.\[\dfrac{{63}}{{65}}\]
Answer
506.1k+ views
Hint: In the question related to the inverse trigonometric ratios we solve it by using trigonometric ratios values by converting them to required angles of specific values like \[\left( {\sin {{30}^ \circ } = \dfrac{1}{2}} \right)\] , but when values of ratios \[\left( {\dfrac{{63}}{{65}}} \right)\] are inconvertible we have use identity according to the questions
Complete step-by-step answer:
Given : \[\sin \left( {2{{\sin }^{ - 1}}\sqrt {\dfrac{{63}}{{65}}} } \right)\] , on rearranging the expression we get ,
\[ = \sin \left( {{{\sin }^{ - 1}}\sqrt {\dfrac{{63}}{{65}}} + {{\sin }^{ - 1}}\sqrt {\dfrac{{63}}{{65}}} } \right)\]
Now , using the identity for \[{\sin ^{ - 1}}x + {\sin ^{ - 1}}y = {\sin ^{ - 1}}\left[ {x\sqrt {1 - {y^2}} + y\sqrt {1 - {x^2}} } \right]\] we get ,
\[ = \sin \left[ {{{\sin }^{ - 1}}\left( {\sqrt {\dfrac{{63}}{{65}}} \sqrt {1 - {{\left( {\sqrt {\dfrac{{63}}{{65}}} } \right)}^2}} + \sqrt {\dfrac{{63}}{{65}}} \sqrt {1 - {{\left( {\sqrt {\dfrac{{63}}{{65}}} } \right)}^2}} } \right)} \right]\] ,
Remember that the angles are already present under root . So , on solving we get ,
\[ = \sin \left[ {{{\sin }^{ - 1}}\left( {\sqrt {\dfrac{{63}}{{65}}} \sqrt {\dfrac{{65 - 63}}{{65}}} + \sqrt {\dfrac{{63}}{{65}}} \sqrt {\dfrac{{65 - 63}}{{65}}} } \right)} \right]\] , on solving further we get ,
\[ = \sin \left[ {{{\sin }^{ - 1}}\left( {\sqrt {\dfrac{{63}}{{65}}} \sqrt {\dfrac{2}{{65}}} + \sqrt {\dfrac{{63}}{{65}}} \sqrt {\dfrac{2}{{65}}} } \right)} \right]\]
On simplifying we get ,
\[ = \sin \left[ {{{\sin }^{ - 1}}\left( {\dfrac{{\sqrt {126} }}{{65}} + \dfrac{{\sqrt {126} }}{{65}}} \right)} \right]\] , on adding we get
\[ = \sin \left[ {{{\sin }^{ - 1}}\left( {\dfrac{{2\sqrt {126} }}{{65}}} \right)} \right]\]
On simplifying we get ,
\[ = \dfrac{{2\sqrt {126} }}{{65}}\]
Therefore , the option ( A ) is the correct answer for the given option .
So, the correct answer is “Option A”.
Note: Given : \[\sin \left( {2{{\sin }^{ - 1}}\sqrt {\dfrac{{63}}{{65}}} } \right)\]
Now using the identity for \[2{\sin ^{ - 1}} = {\sin ^{ - 1}}2x\sqrt {1 - {x^2}} \] we get
\[ = \sin \left( {{{\sin }^{ - 1}}2\sqrt {\dfrac{{63}}{{65}}} \sqrt {1 - {{\left( {\sqrt {\dfrac{{63}}{{65}}} } \right)}^2}} } \right)\] , on solving we get
\[ = \sin \left( {{{\sin }^{ - 1}}2\sqrt {\dfrac{{63}}{{65}}} \sqrt {\dfrac{{65 - 63}}{{65}}} } \right)\]
On simplifying we get ,
\[ = \sin \left( {{{\sin }^{ - 1}}2\sqrt {\dfrac{{63}}{{65}}} \sqrt {\dfrac{2}{{65}}} } \right)\] , on solving we get
\[ = \sin \left[ {{{\sin }^{ - 1}}\left( {\dfrac{{2\sqrt {126} }}{{65}}} \right)} \right]\]
On rationalizing we get ,
\[ = \dfrac{{2\sqrt {126} }}{{65}}\] .
Complete step-by-step answer:
Given : \[\sin \left( {2{{\sin }^{ - 1}}\sqrt {\dfrac{{63}}{{65}}} } \right)\] , on rearranging the expression we get ,
\[ = \sin \left( {{{\sin }^{ - 1}}\sqrt {\dfrac{{63}}{{65}}} + {{\sin }^{ - 1}}\sqrt {\dfrac{{63}}{{65}}} } \right)\]
Now , using the identity for \[{\sin ^{ - 1}}x + {\sin ^{ - 1}}y = {\sin ^{ - 1}}\left[ {x\sqrt {1 - {y^2}} + y\sqrt {1 - {x^2}} } \right]\] we get ,
\[ = \sin \left[ {{{\sin }^{ - 1}}\left( {\sqrt {\dfrac{{63}}{{65}}} \sqrt {1 - {{\left( {\sqrt {\dfrac{{63}}{{65}}} } \right)}^2}} + \sqrt {\dfrac{{63}}{{65}}} \sqrt {1 - {{\left( {\sqrt {\dfrac{{63}}{{65}}} } \right)}^2}} } \right)} \right]\] ,
Remember that the angles are already present under root . So , on solving we get ,
\[ = \sin \left[ {{{\sin }^{ - 1}}\left( {\sqrt {\dfrac{{63}}{{65}}} \sqrt {\dfrac{{65 - 63}}{{65}}} + \sqrt {\dfrac{{63}}{{65}}} \sqrt {\dfrac{{65 - 63}}{{65}}} } \right)} \right]\] , on solving further we get ,
\[ = \sin \left[ {{{\sin }^{ - 1}}\left( {\sqrt {\dfrac{{63}}{{65}}} \sqrt {\dfrac{2}{{65}}} + \sqrt {\dfrac{{63}}{{65}}} \sqrt {\dfrac{2}{{65}}} } \right)} \right]\]
On simplifying we get ,
\[ = \sin \left[ {{{\sin }^{ - 1}}\left( {\dfrac{{\sqrt {126} }}{{65}} + \dfrac{{\sqrt {126} }}{{65}}} \right)} \right]\] , on adding we get
\[ = \sin \left[ {{{\sin }^{ - 1}}\left( {\dfrac{{2\sqrt {126} }}{{65}}} \right)} \right]\]
On simplifying we get ,
\[ = \dfrac{{2\sqrt {126} }}{{65}}\]
Therefore , the option ( A ) is the correct answer for the given option .
So, the correct answer is “Option A”.
Note: Given : \[\sin \left( {2{{\sin }^{ - 1}}\sqrt {\dfrac{{63}}{{65}}} } \right)\]
Now using the identity for \[2{\sin ^{ - 1}} = {\sin ^{ - 1}}2x\sqrt {1 - {x^2}} \] we get
\[ = \sin \left( {{{\sin }^{ - 1}}2\sqrt {\dfrac{{63}}{{65}}} \sqrt {1 - {{\left( {\sqrt {\dfrac{{63}}{{65}}} } \right)}^2}} } \right)\] , on solving we get
\[ = \sin \left( {{{\sin }^{ - 1}}2\sqrt {\dfrac{{63}}{{65}}} \sqrt {\dfrac{{65 - 63}}{{65}}} } \right)\]
On simplifying we get ,
\[ = \sin \left( {{{\sin }^{ - 1}}2\sqrt {\dfrac{{63}}{{65}}} \sqrt {\dfrac{2}{{65}}} } \right)\] , on solving we get
\[ = \sin \left[ {{{\sin }^{ - 1}}\left( {\dfrac{{2\sqrt {126} }}{{65}}} \right)} \right]\]
On rationalizing we get ,
\[ = \dfrac{{2\sqrt {126} }}{{65}}\] .
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

