
Solve $\sin 3x=\cos 3x$ for ${{0}^{\circ }} < x < {{360}^{\circ }}$ ?
Answer
483.9k+ views
Hint: Here we have been given an equation with trigonometric function in it and we have to find the value of $x$ whose range is given. Firstly we will take the right hand side value to the left and side and using trigonometric relation convert the fraction into non-fraction value. Then we will take the trigonometric function on the right side and solve the value obtained to get our desired answer.
Complete step by step answer:
We have to solve the below equation:
$\sin 3x=\cos 3x$….$\left( 1 \right)$
For ${{0}^{\circ }} < x < {{360}^{\circ }}$
Now take the right hand side value to the left hand side in equation (1),
$\Rightarrow \dfrac{\sin 3x}{\cos 3x}=1$
Now as we know the relation that $\dfrac{\sin A}{\cos A}=\tan A$ using it above where $A=3x$ we get,
$\Rightarrow \tan 3x=1$
Take the trigonometric function on the right side as follows:
$\Rightarrow 3x={{\tan }^{-1}}1$
We know $\tan \left( \dfrac{\pi }{4}+k\pi \right)=1$ for all $k\in Z$ substituting it above,
$\Rightarrow 3x={{\tan }^{-1}}\tan \left( \dfrac{\pi }{4}+k\pi \right)$
As ${{\tan }^{-1}}\tan x=x$ we get,
$\Rightarrow 3x=\left( \dfrac{\pi }{4}+k\pi \right)$
$\Rightarrow x=\dfrac{1}{3}\left( \dfrac{\pi }{4}+k\pi \right)$
So we get,
$\Rightarrow x=\dfrac{\pi }{12}+\dfrac{k\pi }{3}$
As $\pi ={{180}^{\circ }}$ we get,
$\Rightarrow x=\dfrac{{{180}^{\circ }}}{12}+\dfrac{{{180}^{\circ }}}{3}k$
$\Rightarrow x={{15}^{\circ }}+{{60}^{\circ }}k$ $\forall \,k\in Z$
As we know ${{0}^{\circ }} < x < {{360}^{\circ }}$
So we will let $k$ values till our $x$ lies in the above range.
Let $k=1$
$\Rightarrow x={{15}^{\circ }}+{{60}^{\circ }}\times 1$
$\Rightarrow x={{75}^{\circ }}$
Let $k=2$
$\Rightarrow x={{15}^{\circ }}+{{60}^{\circ }}\times 2$
$\Rightarrow x={{135}^{\circ }}$
Let $k=3$
$\Rightarrow x={{15}^{\circ }}+{{60}^{\circ }}\times 3$
$\Rightarrow x={{195}^{\circ }}$
Let $k=4$
$\Rightarrow x={{15}^{\circ }}+{{60}^{\circ }}\times 4$
$\Rightarrow x={{255}^{\circ }}$
Let $k=5$
$\Rightarrow x={{15}^{\circ }}+{{60}^{\circ }}\times 5$
$\Rightarrow x={{315}^{\circ }}$
Now if $k=6$ our $x>{{360}^{\circ }}$
So we got the value of $x={{75}^{\circ }},{{135}^{\circ }},{{195}^{\circ }},{{255}^{\circ }},{{315}^{\circ }}$
Hence the solution of $\sin 3x=\cos 3x$ for ${{0}^{\circ }} < x < {{360}^{\circ }}$ is $x={{75}^{\circ }},{{135}^{\circ }},{{195}^{\circ }},{{255}^{\circ }},{{315}^{\circ }}$.
Note:
As the range of the unknown variable is given we have further simplified our answer by taking different values of $k$ . If the range was not given our answer would be the general solution which is true for all values of $k$ . The relation between the six trigonometric functions is very useful in such questions as it removes the long method of calculation. Also when we take the trigonometric function on the other side it becomes an inverse function and to solve that we need to use the inverse function properties and formulas.
Complete step by step answer:
We have to solve the below equation:
$\sin 3x=\cos 3x$….$\left( 1 \right)$
For ${{0}^{\circ }} < x < {{360}^{\circ }}$
Now take the right hand side value to the left hand side in equation (1),
$\Rightarrow \dfrac{\sin 3x}{\cos 3x}=1$
Now as we know the relation that $\dfrac{\sin A}{\cos A}=\tan A$ using it above where $A=3x$ we get,
$\Rightarrow \tan 3x=1$
Take the trigonometric function on the right side as follows:
$\Rightarrow 3x={{\tan }^{-1}}1$
We know $\tan \left( \dfrac{\pi }{4}+k\pi \right)=1$ for all $k\in Z$ substituting it above,
$\Rightarrow 3x={{\tan }^{-1}}\tan \left( \dfrac{\pi }{4}+k\pi \right)$
As ${{\tan }^{-1}}\tan x=x$ we get,
$\Rightarrow 3x=\left( \dfrac{\pi }{4}+k\pi \right)$
$\Rightarrow x=\dfrac{1}{3}\left( \dfrac{\pi }{4}+k\pi \right)$
So we get,
$\Rightarrow x=\dfrac{\pi }{12}+\dfrac{k\pi }{3}$
As $\pi ={{180}^{\circ }}$ we get,
$\Rightarrow x=\dfrac{{{180}^{\circ }}}{12}+\dfrac{{{180}^{\circ }}}{3}k$
$\Rightarrow x={{15}^{\circ }}+{{60}^{\circ }}k$ $\forall \,k\in Z$
As we know ${{0}^{\circ }} < x < {{360}^{\circ }}$
So we will let $k$ values till our $x$ lies in the above range.
Let $k=1$
$\Rightarrow x={{15}^{\circ }}+{{60}^{\circ }}\times 1$
$\Rightarrow x={{75}^{\circ }}$
Let $k=2$
$\Rightarrow x={{15}^{\circ }}+{{60}^{\circ }}\times 2$
$\Rightarrow x={{135}^{\circ }}$
Let $k=3$
$\Rightarrow x={{15}^{\circ }}+{{60}^{\circ }}\times 3$
$\Rightarrow x={{195}^{\circ }}$
Let $k=4$
$\Rightarrow x={{15}^{\circ }}+{{60}^{\circ }}\times 4$
$\Rightarrow x={{255}^{\circ }}$
Let $k=5$
$\Rightarrow x={{15}^{\circ }}+{{60}^{\circ }}\times 5$
$\Rightarrow x={{315}^{\circ }}$
Now if $k=6$ our $x>{{360}^{\circ }}$
So we got the value of $x={{75}^{\circ }},{{135}^{\circ }},{{195}^{\circ }},{{255}^{\circ }},{{315}^{\circ }}$
Hence the solution of $\sin 3x=\cos 3x$ for ${{0}^{\circ }} < x < {{360}^{\circ }}$ is $x={{75}^{\circ }},{{135}^{\circ }},{{195}^{\circ }},{{255}^{\circ }},{{315}^{\circ }}$.
Note:
As the range of the unknown variable is given we have further simplified our answer by taking different values of $k$ . If the range was not given our answer would be the general solution which is true for all values of $k$ . The relation between the six trigonometric functions is very useful in such questions as it removes the long method of calculation. Also when we take the trigonometric function on the other side it becomes an inverse function and to solve that we need to use the inverse function properties and formulas.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

