
Solve $\sin 3x=\cos 3x$ for ${{0}^{\circ }} < x < {{360}^{\circ }}$ ?
Answer
493.2k+ views
Hint: Here we have been given an equation with trigonometric function in it and we have to find the value of $x$ whose range is given. Firstly we will take the right hand side value to the left and side and using trigonometric relation convert the fraction into non-fraction value. Then we will take the trigonometric function on the right side and solve the value obtained to get our desired answer.
Complete step by step answer:
We have to solve the below equation:
$\sin 3x=\cos 3x$….$\left( 1 \right)$
For ${{0}^{\circ }} < x < {{360}^{\circ }}$
Now take the right hand side value to the left hand side in equation (1),
$\Rightarrow \dfrac{\sin 3x}{\cos 3x}=1$
Now as we know the relation that $\dfrac{\sin A}{\cos A}=\tan A$ using it above where $A=3x$ we get,
$\Rightarrow \tan 3x=1$
Take the trigonometric function on the right side as follows:
$\Rightarrow 3x={{\tan }^{-1}}1$
We know $\tan \left( \dfrac{\pi }{4}+k\pi \right)=1$ for all $k\in Z$ substituting it above,
$\Rightarrow 3x={{\tan }^{-1}}\tan \left( \dfrac{\pi }{4}+k\pi \right)$
As ${{\tan }^{-1}}\tan x=x$ we get,
$\Rightarrow 3x=\left( \dfrac{\pi }{4}+k\pi \right)$
$\Rightarrow x=\dfrac{1}{3}\left( \dfrac{\pi }{4}+k\pi \right)$
So we get,
$\Rightarrow x=\dfrac{\pi }{12}+\dfrac{k\pi }{3}$
As $\pi ={{180}^{\circ }}$ we get,
$\Rightarrow x=\dfrac{{{180}^{\circ }}}{12}+\dfrac{{{180}^{\circ }}}{3}k$
$\Rightarrow x={{15}^{\circ }}+{{60}^{\circ }}k$ $\forall \,k\in Z$
As we know ${{0}^{\circ }} < x < {{360}^{\circ }}$
So we will let $k$ values till our $x$ lies in the above range.
Let $k=1$
$\Rightarrow x={{15}^{\circ }}+{{60}^{\circ }}\times 1$
$\Rightarrow x={{75}^{\circ }}$
Let $k=2$
$\Rightarrow x={{15}^{\circ }}+{{60}^{\circ }}\times 2$
$\Rightarrow x={{135}^{\circ }}$
Let $k=3$
$\Rightarrow x={{15}^{\circ }}+{{60}^{\circ }}\times 3$
$\Rightarrow x={{195}^{\circ }}$
Let $k=4$
$\Rightarrow x={{15}^{\circ }}+{{60}^{\circ }}\times 4$
$\Rightarrow x={{255}^{\circ }}$
Let $k=5$
$\Rightarrow x={{15}^{\circ }}+{{60}^{\circ }}\times 5$
$\Rightarrow x={{315}^{\circ }}$
Now if $k=6$ our $x>{{360}^{\circ }}$
So we got the value of $x={{75}^{\circ }},{{135}^{\circ }},{{195}^{\circ }},{{255}^{\circ }},{{315}^{\circ }}$
Hence the solution of $\sin 3x=\cos 3x$ for ${{0}^{\circ }} < x < {{360}^{\circ }}$ is $x={{75}^{\circ }},{{135}^{\circ }},{{195}^{\circ }},{{255}^{\circ }},{{315}^{\circ }}$.
Note:
As the range of the unknown variable is given we have further simplified our answer by taking different values of $k$ . If the range was not given our answer would be the general solution which is true for all values of $k$ . The relation between the six trigonometric functions is very useful in such questions as it removes the long method of calculation. Also when we take the trigonometric function on the other side it becomes an inverse function and to solve that we need to use the inverse function properties and formulas.
Complete step by step answer:
We have to solve the below equation:
$\sin 3x=\cos 3x$….$\left( 1 \right)$
For ${{0}^{\circ }} < x < {{360}^{\circ }}$
Now take the right hand side value to the left hand side in equation (1),
$\Rightarrow \dfrac{\sin 3x}{\cos 3x}=1$
Now as we know the relation that $\dfrac{\sin A}{\cos A}=\tan A$ using it above where $A=3x$ we get,
$\Rightarrow \tan 3x=1$
Take the trigonometric function on the right side as follows:
$\Rightarrow 3x={{\tan }^{-1}}1$
We know $\tan \left( \dfrac{\pi }{4}+k\pi \right)=1$ for all $k\in Z$ substituting it above,
$\Rightarrow 3x={{\tan }^{-1}}\tan \left( \dfrac{\pi }{4}+k\pi \right)$
As ${{\tan }^{-1}}\tan x=x$ we get,
$\Rightarrow 3x=\left( \dfrac{\pi }{4}+k\pi \right)$
$\Rightarrow x=\dfrac{1}{3}\left( \dfrac{\pi }{4}+k\pi \right)$
So we get,
$\Rightarrow x=\dfrac{\pi }{12}+\dfrac{k\pi }{3}$
As $\pi ={{180}^{\circ }}$ we get,
$\Rightarrow x=\dfrac{{{180}^{\circ }}}{12}+\dfrac{{{180}^{\circ }}}{3}k$
$\Rightarrow x={{15}^{\circ }}+{{60}^{\circ }}k$ $\forall \,k\in Z$
As we know ${{0}^{\circ }} < x < {{360}^{\circ }}$
So we will let $k$ values till our $x$ lies in the above range.
Let $k=1$
$\Rightarrow x={{15}^{\circ }}+{{60}^{\circ }}\times 1$
$\Rightarrow x={{75}^{\circ }}$
Let $k=2$
$\Rightarrow x={{15}^{\circ }}+{{60}^{\circ }}\times 2$
$\Rightarrow x={{135}^{\circ }}$
Let $k=3$
$\Rightarrow x={{15}^{\circ }}+{{60}^{\circ }}\times 3$
$\Rightarrow x={{195}^{\circ }}$
Let $k=4$
$\Rightarrow x={{15}^{\circ }}+{{60}^{\circ }}\times 4$
$\Rightarrow x={{255}^{\circ }}$
Let $k=5$
$\Rightarrow x={{15}^{\circ }}+{{60}^{\circ }}\times 5$
$\Rightarrow x={{315}^{\circ }}$
Now if $k=6$ our $x>{{360}^{\circ }}$
So we got the value of $x={{75}^{\circ }},{{135}^{\circ }},{{195}^{\circ }},{{255}^{\circ }},{{315}^{\circ }}$
Hence the solution of $\sin 3x=\cos 3x$ for ${{0}^{\circ }} < x < {{360}^{\circ }}$ is $x={{75}^{\circ }},{{135}^{\circ }},{{195}^{\circ }},{{255}^{\circ }},{{315}^{\circ }}$.
Note:
As the range of the unknown variable is given we have further simplified our answer by taking different values of $k$ . If the range was not given our answer would be the general solution which is true for all values of $k$ . The relation between the six trigonometric functions is very useful in such questions as it removes the long method of calculation. Also when we take the trigonometric function on the other side it becomes an inverse function and to solve that we need to use the inverse function properties and formulas.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

