
Solve: \[{\sin ^2}\dfrac{{2\pi }}{3} + {\cos ^2}\dfrac{{5\pi }}{6} - {\tan ^2}\dfrac{{3\pi }}{4}\]
Answer
501.3k+ views
Hint: Here, we are given a trigonometric expression and we need to find the value of it. We will use \[\sin (\pi - x) = \sin x\], \[\cos (\pi - x) = - \cos x\] and \[\tan (\pi - x) = - \tan x\] . We will also the trigonometry ratios values too and so one should know those values to solve any question. Or we can substitute the value of \[\pi = {180^\circ }\] and solve this question too, get the final output. The angles are either measured in radians or degrees. The trigonometric ratios of a triangle are also called the trigonometric functions.
Complete step by step answer: Given that,
\[{\sin ^2}\dfrac{{2\pi }}{3} + {\cos ^2}\dfrac{{5\pi }}{6} - {\tan ^2}\dfrac{{3\pi }}{4}= {\sin ^2}(\pi - \dfrac{\pi }{3}) + {\cos ^2}(\pi - \dfrac{\pi }{6}) - {\tan ^2}(\pi - \dfrac{\pi }{4})\]
We know that,
\[\sin (\pi - x) = \sin x\]
\[\Rightarrow \cos (\pi - x) = - \cos x\]
\[\Rightarrow \tan (\pi - x) = - \tan x\]
Using this above trigonometry rules, we will get,
\[{\sin ^2}\dfrac{\pi }{3} + ( - {\cos ^2}\dfrac{\pi }{6}) - ( - {\tan ^2}\dfrac{\pi }{4})\]
\[\Rightarrow {(\sin \dfrac{\pi }{3})^2} + {( - \cos \dfrac{\pi }{6})^2} - {( - \tan \dfrac{\pi }{4})^2}\]
We also know that, the trigonometry values of:
\[\sin \dfrac{\pi }{3} = \dfrac{{\sqrt 3 }}{2}\]
\[\Rightarrow \cos \dfrac{\pi }{6} = \dfrac{{\sqrt 3 }}{2}\]
\[\Rightarrow \tan \dfrac{\pi }{4} = 1\]
Substituting these values in the above expression, we will get,
\[{(\sin \dfrac{\pi }{3})^2} + {( - \cos \dfrac{\pi }{6})^2} - {( - \tan \dfrac{\pi }{4})^2} = {(\dfrac{{\sqrt 3 }}{2})^2} + {( - \dfrac{{\sqrt 3 }}{2})^2} - {( - 1)^2}\]
Removing the brackets, we get,
\[ \Rightarrow {(\sin \dfrac{\pi }{3})^2} + {( - \cos \dfrac{\pi }{6})^2} - {( - \tan \dfrac{\pi }{4})^2}= \dfrac{3}{4} + \dfrac{3}{4} - 1\]
On evaluating this, we will get,
\[ \Rightarrow{(\sin \dfrac{\pi }{3})^2} + {( - \cos \dfrac{\pi }{6})^2} - {( - \tan \dfrac{\pi }{4})^2} = \dfrac{6}{4} - 1\]
\[ \Rightarrow{(\sin \dfrac{\pi }{3})^2} + {( - \cos \dfrac{\pi }{6})^2} - {( - \tan \dfrac{\pi }{4})^2} = \dfrac{{6 - 4}}{4}\]
\[ \Rightarrow{(\sin \dfrac{\pi }{3})^2} + {( - \cos \dfrac{\pi }{6})^2} - {( - \tan \dfrac{\pi }{4})^2}= \dfrac{2}{4}\]
\[ \therefore {(\sin \dfrac{\pi }{3})^2} + {( - \cos \dfrac{\pi }{6})^2} - {( - \tan \dfrac{\pi }{4})^2} = \dfrac{1}{2}\]
Another Method:
\[{\sin ^2}\dfrac{{2\pi }}{3} + {\cos ^2}\dfrac{{5\pi }}{6} - {\tan ^2}\dfrac{{3\pi }}{4}\]
We know that, \[\pi = {180^\circ }\] and so substituting this value of \[\pi \] , we will get,
\[{\sin ^2}(\dfrac{{2 \times 180}}{3}) + {\cos ^2}(\dfrac{{5 \times 180}}{6}) - {\tan ^2}(\dfrac{{3 \times 180}}{4})\]
\[\Rightarrow {\sin ^2}{120^\circ } + {\cos ^2}{150^\circ } - {\tan ^2}{135^\circ }\]
\[\Rightarrow {\sin ^2}{(180 - 60)^\circ } + {\cos ^2}{(180 - 30)^\circ } - {\tan ^2}{(180 - 45)^\circ }\]
\[\Rightarrow {\sin ^2}{60^\circ } + ( - {\cos ^2}{30^\circ }) - ( - {\tan ^2}{45^\circ })\]
\[\Rightarrow {(\sin {60^\circ })^2} + {( - \cos {30^\circ })^2} - {( - \tan {45^\circ })^2}\]
Substituting the values of the trigonometry ratios, we will get,
\[{(\dfrac{{\sqrt 3 }}{2})^2} + {( - \dfrac{{\sqrt 3 }}{2})^2} - {( - 1)^2}=\dfrac{1}{2}\]
Hence, for the given trigonometric expression, the value of \[{\sin ^2}\dfrac{{2\pi }}{3} + {\cos ^2}\dfrac{{5\pi }}{6} - {\tan ^2}\dfrac{{3\pi }}{4} = \dfrac{1}{2}\].
Note: Here, we will study the relationship between the sides and angles of a right-angled triangle. Trigonometry is one of those divisions in mathematics that helps in finding the angles and missing sides of a triangle with the help of trigonometric ratios. The trigonometric ratios such as sine, cosine and tangent of these angles are easy to memorize.To find these angels we have to draw a right-angled triangle, in which one of the acute angles will be the corresponding trigonometry angle.
Complete step by step answer: Given that,
\[{\sin ^2}\dfrac{{2\pi }}{3} + {\cos ^2}\dfrac{{5\pi }}{6} - {\tan ^2}\dfrac{{3\pi }}{4}= {\sin ^2}(\pi - \dfrac{\pi }{3}) + {\cos ^2}(\pi - \dfrac{\pi }{6}) - {\tan ^2}(\pi - \dfrac{\pi }{4})\]
We know that,
\[\sin (\pi - x) = \sin x\]
\[\Rightarrow \cos (\pi - x) = - \cos x\]
\[\Rightarrow \tan (\pi - x) = - \tan x\]
Using this above trigonometry rules, we will get,
\[{\sin ^2}\dfrac{\pi }{3} + ( - {\cos ^2}\dfrac{\pi }{6}) - ( - {\tan ^2}\dfrac{\pi }{4})\]
\[\Rightarrow {(\sin \dfrac{\pi }{3})^2} + {( - \cos \dfrac{\pi }{6})^2} - {( - \tan \dfrac{\pi }{4})^2}\]
We also know that, the trigonometry values of:
\[\sin \dfrac{\pi }{3} = \dfrac{{\sqrt 3 }}{2}\]
\[\Rightarrow \cos \dfrac{\pi }{6} = \dfrac{{\sqrt 3 }}{2}\]
\[\Rightarrow \tan \dfrac{\pi }{4} = 1\]
Substituting these values in the above expression, we will get,
\[{(\sin \dfrac{\pi }{3})^2} + {( - \cos \dfrac{\pi }{6})^2} - {( - \tan \dfrac{\pi }{4})^2} = {(\dfrac{{\sqrt 3 }}{2})^2} + {( - \dfrac{{\sqrt 3 }}{2})^2} - {( - 1)^2}\]
Removing the brackets, we get,
\[ \Rightarrow {(\sin \dfrac{\pi }{3})^2} + {( - \cos \dfrac{\pi }{6})^2} - {( - \tan \dfrac{\pi }{4})^2}= \dfrac{3}{4} + \dfrac{3}{4} - 1\]
On evaluating this, we will get,
\[ \Rightarrow{(\sin \dfrac{\pi }{3})^2} + {( - \cos \dfrac{\pi }{6})^2} - {( - \tan \dfrac{\pi }{4})^2} = \dfrac{6}{4} - 1\]
\[ \Rightarrow{(\sin \dfrac{\pi }{3})^2} + {( - \cos \dfrac{\pi }{6})^2} - {( - \tan \dfrac{\pi }{4})^2} = \dfrac{{6 - 4}}{4}\]
\[ \Rightarrow{(\sin \dfrac{\pi }{3})^2} + {( - \cos \dfrac{\pi }{6})^2} - {( - \tan \dfrac{\pi }{4})^2}= \dfrac{2}{4}\]
\[ \therefore {(\sin \dfrac{\pi }{3})^2} + {( - \cos \dfrac{\pi }{6})^2} - {( - \tan \dfrac{\pi }{4})^2} = \dfrac{1}{2}\]
Another Method:
\[{\sin ^2}\dfrac{{2\pi }}{3} + {\cos ^2}\dfrac{{5\pi }}{6} - {\tan ^2}\dfrac{{3\pi }}{4}\]
We know that, \[\pi = {180^\circ }\] and so substituting this value of \[\pi \] , we will get,
\[{\sin ^2}(\dfrac{{2 \times 180}}{3}) + {\cos ^2}(\dfrac{{5 \times 180}}{6}) - {\tan ^2}(\dfrac{{3 \times 180}}{4})\]
\[\Rightarrow {\sin ^2}{120^\circ } + {\cos ^2}{150^\circ } - {\tan ^2}{135^\circ }\]
\[\Rightarrow {\sin ^2}{(180 - 60)^\circ } + {\cos ^2}{(180 - 30)^\circ } - {\tan ^2}{(180 - 45)^\circ }\]
\[\Rightarrow {\sin ^2}{60^\circ } + ( - {\cos ^2}{30^\circ }) - ( - {\tan ^2}{45^\circ })\]
\[\Rightarrow {(\sin {60^\circ })^2} + {( - \cos {30^\circ })^2} - {( - \tan {45^\circ })^2}\]
Substituting the values of the trigonometry ratios, we will get,
\[{(\dfrac{{\sqrt 3 }}{2})^2} + {( - \dfrac{{\sqrt 3 }}{2})^2} - {( - 1)^2}=\dfrac{1}{2}\]
Hence, for the given trigonometric expression, the value of \[{\sin ^2}\dfrac{{2\pi }}{3} + {\cos ^2}\dfrac{{5\pi }}{6} - {\tan ^2}\dfrac{{3\pi }}{4} = \dfrac{1}{2}\].
Note: Here, we will study the relationship between the sides and angles of a right-angled triangle. Trigonometry is one of those divisions in mathematics that helps in finding the angles and missing sides of a triangle with the help of trigonometric ratios. The trigonometric ratios such as sine, cosine and tangent of these angles are easy to memorize.To find these angels we have to draw a right-angled triangle, in which one of the acute angles will be the corresponding trigonometry angle.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

