
Solve: \[{\sin ^2}\dfrac{{2\pi }}{3} + {\cos ^2}\dfrac{{5\pi }}{6} - {\tan ^2}\dfrac{{3\pi }}{4}\]
Answer
488.1k+ views
Hint: Here, we are given a trigonometric expression and we need to find the value of it. We will use \[\sin (\pi - x) = \sin x\], \[\cos (\pi - x) = - \cos x\] and \[\tan (\pi - x) = - \tan x\] . We will also the trigonometry ratios values too and so one should know those values to solve any question. Or we can substitute the value of \[\pi = {180^\circ }\] and solve this question too, get the final output. The angles are either measured in radians or degrees. The trigonometric ratios of a triangle are also called the trigonometric functions.
Complete step by step answer: Given that,
\[{\sin ^2}\dfrac{{2\pi }}{3} + {\cos ^2}\dfrac{{5\pi }}{6} - {\tan ^2}\dfrac{{3\pi }}{4}= {\sin ^2}(\pi - \dfrac{\pi }{3}) + {\cos ^2}(\pi - \dfrac{\pi }{6}) - {\tan ^2}(\pi - \dfrac{\pi }{4})\]
We know that,
\[\sin (\pi - x) = \sin x\]
\[\Rightarrow \cos (\pi - x) = - \cos x\]
\[\Rightarrow \tan (\pi - x) = - \tan x\]
Using this above trigonometry rules, we will get,
\[{\sin ^2}\dfrac{\pi }{3} + ( - {\cos ^2}\dfrac{\pi }{6}) - ( - {\tan ^2}\dfrac{\pi }{4})\]
\[\Rightarrow {(\sin \dfrac{\pi }{3})^2} + {( - \cos \dfrac{\pi }{6})^2} - {( - \tan \dfrac{\pi }{4})^2}\]
We also know that, the trigonometry values of:
\[\sin \dfrac{\pi }{3} = \dfrac{{\sqrt 3 }}{2}\]
\[\Rightarrow \cos \dfrac{\pi }{6} = \dfrac{{\sqrt 3 }}{2}\]
\[\Rightarrow \tan \dfrac{\pi }{4} = 1\]
Substituting these values in the above expression, we will get,
\[{(\sin \dfrac{\pi }{3})^2} + {( - \cos \dfrac{\pi }{6})^2} - {( - \tan \dfrac{\pi }{4})^2} = {(\dfrac{{\sqrt 3 }}{2})^2} + {( - \dfrac{{\sqrt 3 }}{2})^2} - {( - 1)^2}\]
Removing the brackets, we get,
\[ \Rightarrow {(\sin \dfrac{\pi }{3})^2} + {( - \cos \dfrac{\pi }{6})^2} - {( - \tan \dfrac{\pi }{4})^2}= \dfrac{3}{4} + \dfrac{3}{4} - 1\]
On evaluating this, we will get,
\[ \Rightarrow{(\sin \dfrac{\pi }{3})^2} + {( - \cos \dfrac{\pi }{6})^2} - {( - \tan \dfrac{\pi }{4})^2} = \dfrac{6}{4} - 1\]
\[ \Rightarrow{(\sin \dfrac{\pi }{3})^2} + {( - \cos \dfrac{\pi }{6})^2} - {( - \tan \dfrac{\pi }{4})^2} = \dfrac{{6 - 4}}{4}\]
\[ \Rightarrow{(\sin \dfrac{\pi }{3})^2} + {( - \cos \dfrac{\pi }{6})^2} - {( - \tan \dfrac{\pi }{4})^2}= \dfrac{2}{4}\]
\[ \therefore {(\sin \dfrac{\pi }{3})^2} + {( - \cos \dfrac{\pi }{6})^2} - {( - \tan \dfrac{\pi }{4})^2} = \dfrac{1}{2}\]
Another Method:
\[{\sin ^2}\dfrac{{2\pi }}{3} + {\cos ^2}\dfrac{{5\pi }}{6} - {\tan ^2}\dfrac{{3\pi }}{4}\]
We know that, \[\pi = {180^\circ }\] and so substituting this value of \[\pi \] , we will get,
\[{\sin ^2}(\dfrac{{2 \times 180}}{3}) + {\cos ^2}(\dfrac{{5 \times 180}}{6}) - {\tan ^2}(\dfrac{{3 \times 180}}{4})\]
\[\Rightarrow {\sin ^2}{120^\circ } + {\cos ^2}{150^\circ } - {\tan ^2}{135^\circ }\]
\[\Rightarrow {\sin ^2}{(180 - 60)^\circ } + {\cos ^2}{(180 - 30)^\circ } - {\tan ^2}{(180 - 45)^\circ }\]
\[\Rightarrow {\sin ^2}{60^\circ } + ( - {\cos ^2}{30^\circ }) - ( - {\tan ^2}{45^\circ })\]
\[\Rightarrow {(\sin {60^\circ })^2} + {( - \cos {30^\circ })^2} - {( - \tan {45^\circ })^2}\]
Substituting the values of the trigonometry ratios, we will get,
\[{(\dfrac{{\sqrt 3 }}{2})^2} + {( - \dfrac{{\sqrt 3 }}{2})^2} - {( - 1)^2}=\dfrac{1}{2}\]
Hence, for the given trigonometric expression, the value of \[{\sin ^2}\dfrac{{2\pi }}{3} + {\cos ^2}\dfrac{{5\pi }}{6} - {\tan ^2}\dfrac{{3\pi }}{4} = \dfrac{1}{2}\].
Note: Here, we will study the relationship between the sides and angles of a right-angled triangle. Trigonometry is one of those divisions in mathematics that helps in finding the angles and missing sides of a triangle with the help of trigonometric ratios. The trigonometric ratios such as sine, cosine and tangent of these angles are easy to memorize.To find these angels we have to draw a right-angled triangle, in which one of the acute angles will be the corresponding trigonometry angle.
Complete step by step answer: Given that,
\[{\sin ^2}\dfrac{{2\pi }}{3} + {\cos ^2}\dfrac{{5\pi }}{6} - {\tan ^2}\dfrac{{3\pi }}{4}= {\sin ^2}(\pi - \dfrac{\pi }{3}) + {\cos ^2}(\pi - \dfrac{\pi }{6}) - {\tan ^2}(\pi - \dfrac{\pi }{4})\]
We know that,
\[\sin (\pi - x) = \sin x\]
\[\Rightarrow \cos (\pi - x) = - \cos x\]
\[\Rightarrow \tan (\pi - x) = - \tan x\]
Using this above trigonometry rules, we will get,
\[{\sin ^2}\dfrac{\pi }{3} + ( - {\cos ^2}\dfrac{\pi }{6}) - ( - {\tan ^2}\dfrac{\pi }{4})\]
\[\Rightarrow {(\sin \dfrac{\pi }{3})^2} + {( - \cos \dfrac{\pi }{6})^2} - {( - \tan \dfrac{\pi }{4})^2}\]
We also know that, the trigonometry values of:
\[\sin \dfrac{\pi }{3} = \dfrac{{\sqrt 3 }}{2}\]
\[\Rightarrow \cos \dfrac{\pi }{6} = \dfrac{{\sqrt 3 }}{2}\]
\[\Rightarrow \tan \dfrac{\pi }{4} = 1\]
Substituting these values in the above expression, we will get,
\[{(\sin \dfrac{\pi }{3})^2} + {( - \cos \dfrac{\pi }{6})^2} - {( - \tan \dfrac{\pi }{4})^2} = {(\dfrac{{\sqrt 3 }}{2})^2} + {( - \dfrac{{\sqrt 3 }}{2})^2} - {( - 1)^2}\]
Removing the brackets, we get,
\[ \Rightarrow {(\sin \dfrac{\pi }{3})^2} + {( - \cos \dfrac{\pi }{6})^2} - {( - \tan \dfrac{\pi }{4})^2}= \dfrac{3}{4} + \dfrac{3}{4} - 1\]
On evaluating this, we will get,
\[ \Rightarrow{(\sin \dfrac{\pi }{3})^2} + {( - \cos \dfrac{\pi }{6})^2} - {( - \tan \dfrac{\pi }{4})^2} = \dfrac{6}{4} - 1\]
\[ \Rightarrow{(\sin \dfrac{\pi }{3})^2} + {( - \cos \dfrac{\pi }{6})^2} - {( - \tan \dfrac{\pi }{4})^2} = \dfrac{{6 - 4}}{4}\]
\[ \Rightarrow{(\sin \dfrac{\pi }{3})^2} + {( - \cos \dfrac{\pi }{6})^2} - {( - \tan \dfrac{\pi }{4})^2}= \dfrac{2}{4}\]
\[ \therefore {(\sin \dfrac{\pi }{3})^2} + {( - \cos \dfrac{\pi }{6})^2} - {( - \tan \dfrac{\pi }{4})^2} = \dfrac{1}{2}\]
Another Method:
\[{\sin ^2}\dfrac{{2\pi }}{3} + {\cos ^2}\dfrac{{5\pi }}{6} - {\tan ^2}\dfrac{{3\pi }}{4}\]
We know that, \[\pi = {180^\circ }\] and so substituting this value of \[\pi \] , we will get,
\[{\sin ^2}(\dfrac{{2 \times 180}}{3}) + {\cos ^2}(\dfrac{{5 \times 180}}{6}) - {\tan ^2}(\dfrac{{3 \times 180}}{4})\]
\[\Rightarrow {\sin ^2}{120^\circ } + {\cos ^2}{150^\circ } - {\tan ^2}{135^\circ }\]
\[\Rightarrow {\sin ^2}{(180 - 60)^\circ } + {\cos ^2}{(180 - 30)^\circ } - {\tan ^2}{(180 - 45)^\circ }\]
\[\Rightarrow {\sin ^2}{60^\circ } + ( - {\cos ^2}{30^\circ }) - ( - {\tan ^2}{45^\circ })\]
\[\Rightarrow {(\sin {60^\circ })^2} + {( - \cos {30^\circ })^2} - {( - \tan {45^\circ })^2}\]
Substituting the values of the trigonometry ratios, we will get,
\[{(\dfrac{{\sqrt 3 }}{2})^2} + {( - \dfrac{{\sqrt 3 }}{2})^2} - {( - 1)^2}=\dfrac{1}{2}\]
Hence, for the given trigonometric expression, the value of \[{\sin ^2}\dfrac{{2\pi }}{3} + {\cos ^2}\dfrac{{5\pi }}{6} - {\tan ^2}\dfrac{{3\pi }}{4} = \dfrac{1}{2}\].
Note: Here, we will study the relationship between the sides and angles of a right-angled triangle. Trigonometry is one of those divisions in mathematics that helps in finding the angles and missing sides of a triangle with the help of trigonometric ratios. The trigonometric ratios such as sine, cosine and tangent of these angles are easy to memorize.To find these angels we have to draw a right-angled triangle, in which one of the acute angles will be the corresponding trigonometry angle.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

