
How do you solve \[{{\sin }^{2}}A+{{\sin }^{2}}\left( A-B \right)+2\sin A\cos B\sin \left( B-A \right)\] ?
A. \[{{\sin }^{2}}A\]
B. \[{{\sin }^{2}}B\]
C. \[{{\cos }^{2}}A\]
D. \[{{\cos }^{2}}B\]
Answer
528.9k+ views
Hint: In the given question, we have been asked to solve the trigonometric expression i.e. \[{{\sin }^{2}}A+{{\sin }^{2}}\left( A-B \right)+2\sin A\cos B\sin \left( B-A \right)\] . In order to solve this, we will expand or simplify the given trigonometric expression by using the trigonometric identity that i.e. \[\sin \left( A-B \right)=\sin A\cos B-\cos A\sin B\] . Later by using the distributive property of multiplication we will simplify the given expression and solve the terms. In this way we will get the required answer.
We can use the trigonometric relations to write the given expressions in different trigonometric functions;
I. \[\cot x=\dfrac{1}{\tan x}\]
II. \[\tan x=\dfrac{\sin x}{\cos x}\]
III. \[\cot x=\dfrac{\cos x}{\sin x}\]
IV. \[\sec x=\dfrac{1}{\cos x}\]
V. \[co\sec x=\dfrac{1}{\sin x}\]
Complete step by step solution:
We have given that,
\[\Rightarrow {{\sin }^{2}}A+{{\sin }^{2}}\left( A-B \right)+2\sin A\cos B\sin \left( B-A \right)\]
Now,
Using the trigonometric identity i.e. \[\sin \left( A-B \right)=\sin A\cos B-\cos A\sin B\]
Thus,
Substitute the value of \[{{\sin }^{2}}\left( A-B \right)=\left( \sin A\cos B-\cos A\sin B \right)\left( \sin A\cos B-\cos A\sin B \right)\] in the above expression, we will obtain
\[\Rightarrow {{\sin }^{2}}A+\left( \sin A\cos B-\cos A\sin B \right)\left( \sin A\cos B-\cos A\sin B \right)+2\sin A\cos B\left( \sin B\cos A-\cos B\sin A \right)\]
Using the distributive property of multiplication i.e. \[\left( a+b \right)\times \left( c+d \right)=ac+ad+bc+bd\]
Simplifying the above equation,
\[\Rightarrow {{\sin }^{2}}A+\left( {{\sin }^{2}}A{{\cos }^{2}}B-\sin A\sin B\cos A\cos B-\sin A\sin B\cos A\cos B+{{\cos }^{2}}A{{\sin }^{2}}B \right)+2\sin A\sin B\cos A\cos B-2{{\cos }^{2}}B{{\sin }^{2}}A\]
Combining the like terms, we will get
\[\Rightarrow {{\sin }^{2}}A+{{\sin }^{2}}A{{\cos }^{2}}B-2\sin A\sin B\cos A\cos B+{{\cos }^{2}}A{{\sin }^{2}}B+2\sin A\sin B\cos A\cos B-2{{\sin }^{2}}A{{\cos }^{2}}B\]
Again
Combining the like terms, we will get
\[\Rightarrow {{\sin }^{2}}A+{{\sin }^{2}}A{{\cos }^{2}}B+{{\cos }^{2}}A{{\sin }^{2}}B-2{{\sin }^{2}}A{{\cos }^{2}}B\]
We will obtain,
\[\Rightarrow {{\sin }^{2}}A+{{\cos }^{2}}A{{\sin }^{2}}B-{{\sin }^{2}}A{{\cos }^{2}}B\]
Taking \[{{\sin }^{2}}A\] common term,
\[\Rightarrow {{\sin }^{2}}A\left( 1-{{\cos }^{2}}B+{{\cot }^{2}}A{{\sin }^{2}}B \right)\]
\[\Rightarrow {{\sin }^{2}}A{{\sin }^{2}}B\left( 1+{{\cot }^{2}}A \right)\]
As we know that, \[\left( 1+{{\cot }^{2}}A \right)=\cos e{{c}^{2}}A\]
Substituting the value, we will get
\[\Rightarrow {{\sin }^{2}}A{{\sin }^{2}}B\left( \cos e{{c}^{2}}A \right)\]
As we know that the relation between the sin and cosec trigonometric function is \[\cos ec\theta =\dfrac{1}{\sin \theta }\] ,
Therefore,
\[\Rightarrow {{\sin }^{2}}A{{\sin }^{2}}B\left( \dfrac{1}{si{{n}^{2}}A} \right)\]
Cancelling out the common terms, we get
\[\Rightarrow {{\sin }^{2}}B\]
Therefore,
\[\Rightarrow {{\sin }^{2}}A+{{\sin }^{2}}\left( A-B \right)+2\sin A\cos B\sin \left( B-A \right)={{\sin }^{2}}B\]
Hence, the option (b) is the correct answer.
So, the correct answer is “Option b”.
Note: To solve any given trigonometric expression, you just need to remember all the basic identities of trigonometric functions and simplify the equation or the expression by using them. Since all trigonometric functions are inter-relatable thus it may be generally possible to solve the given trigonometric expression in multiple ways to arrive at the solution.
We can use the trigonometric relations to write the given expressions in different trigonometric functions;
I. \[\cot x=\dfrac{1}{\tan x}\]
II. \[\tan x=\dfrac{\sin x}{\cos x}\]
III. \[\cot x=\dfrac{\cos x}{\sin x}\]
IV. \[\sec x=\dfrac{1}{\cos x}\]
V. \[co\sec x=\dfrac{1}{\sin x}\]
Complete step by step solution:
We have given that,
\[\Rightarrow {{\sin }^{2}}A+{{\sin }^{2}}\left( A-B \right)+2\sin A\cos B\sin \left( B-A \right)\]
Now,
Using the trigonometric identity i.e. \[\sin \left( A-B \right)=\sin A\cos B-\cos A\sin B\]
Thus,
Substitute the value of \[{{\sin }^{2}}\left( A-B \right)=\left( \sin A\cos B-\cos A\sin B \right)\left( \sin A\cos B-\cos A\sin B \right)\] in the above expression, we will obtain
\[\Rightarrow {{\sin }^{2}}A+\left( \sin A\cos B-\cos A\sin B \right)\left( \sin A\cos B-\cos A\sin B \right)+2\sin A\cos B\left( \sin B\cos A-\cos B\sin A \right)\]
Using the distributive property of multiplication i.e. \[\left( a+b \right)\times \left( c+d \right)=ac+ad+bc+bd\]
Simplifying the above equation,
\[\Rightarrow {{\sin }^{2}}A+\left( {{\sin }^{2}}A{{\cos }^{2}}B-\sin A\sin B\cos A\cos B-\sin A\sin B\cos A\cos B+{{\cos }^{2}}A{{\sin }^{2}}B \right)+2\sin A\sin B\cos A\cos B-2{{\cos }^{2}}B{{\sin }^{2}}A\]
Combining the like terms, we will get
\[\Rightarrow {{\sin }^{2}}A+{{\sin }^{2}}A{{\cos }^{2}}B-2\sin A\sin B\cos A\cos B+{{\cos }^{2}}A{{\sin }^{2}}B+2\sin A\sin B\cos A\cos B-2{{\sin }^{2}}A{{\cos }^{2}}B\]
Again
Combining the like terms, we will get
\[\Rightarrow {{\sin }^{2}}A+{{\sin }^{2}}A{{\cos }^{2}}B+{{\cos }^{2}}A{{\sin }^{2}}B-2{{\sin }^{2}}A{{\cos }^{2}}B\]
We will obtain,
\[\Rightarrow {{\sin }^{2}}A+{{\cos }^{2}}A{{\sin }^{2}}B-{{\sin }^{2}}A{{\cos }^{2}}B\]
Taking \[{{\sin }^{2}}A\] common term,
\[\Rightarrow {{\sin }^{2}}A\left( 1-{{\cos }^{2}}B+{{\cot }^{2}}A{{\sin }^{2}}B \right)\]
\[\Rightarrow {{\sin }^{2}}A{{\sin }^{2}}B\left( 1+{{\cot }^{2}}A \right)\]
As we know that, \[\left( 1+{{\cot }^{2}}A \right)=\cos e{{c}^{2}}A\]
Substituting the value, we will get
\[\Rightarrow {{\sin }^{2}}A{{\sin }^{2}}B\left( \cos e{{c}^{2}}A \right)\]
As we know that the relation between the sin and cosec trigonometric function is \[\cos ec\theta =\dfrac{1}{\sin \theta }\] ,
Therefore,
\[\Rightarrow {{\sin }^{2}}A{{\sin }^{2}}B\left( \dfrac{1}{si{{n}^{2}}A} \right)\]
Cancelling out the common terms, we get
\[\Rightarrow {{\sin }^{2}}B\]
Therefore,
\[\Rightarrow {{\sin }^{2}}A+{{\sin }^{2}}\left( A-B \right)+2\sin A\cos B\sin \left( B-A \right)={{\sin }^{2}}B\]
Hence, the option (b) is the correct answer.
So, the correct answer is “Option b”.
Note: To solve any given trigonometric expression, you just need to remember all the basic identities of trigonometric functions and simplify the equation or the expression by using them. Since all trigonometric functions are inter-relatable thus it may be generally possible to solve the given trigonometric expression in multiple ways to arrive at the solution.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

