
Solve: $ {{\operatorname{cosec}}^{-1}}\left( \cos x \right) $ is real if; \[\]
A. $ x\in \left[ -1,1 \right] $ \[\]
B. $ x\in R $ \[\]
C. $ x $ is an odd multiple of $ \dfrac{\pi }{2} $ \[\]
D. $ x $ is multiple of $ \pi $ \[\]
Answer
569.4k+ views
Hint: We recall the domain and range of cosec inverse function as $ {{\operatorname{cosec}}^{-1}}x:\left( -\infty ,1 \right]\bigcup \left[ 1,\infty \right)\to \left[ \dfrac{-\pi }{2},0 \right)\bigcup \left( 0,\dfrac{\pi }{2} \right] $ and the domain and range of cosine function as $ \cos x:R\to \left[ -1,1 \right] $ . We use these domain and ranges to see which option is correct. \[\]
Complete step by step answer:
We are given in the question a composite function $ {{\operatorname{cosec}}^{-1}}\left( \cos x \right) $ where the cosec inverse functions $ {{\operatorname{cosec}}^{-1}}x $ takes all the values returned by cosine function $ \cos x $ inside the bracket. We know from domain of cosec inverse function can take values as input which do not belong to the interval $ \left( -1,1 \right) $ .\[\]
A. We are given $ x\in \left[ -1,1 \right] $ . So cosine function $ \cos x $ c will take map this interval $ \left[ -1,1 \right] $ to the interval $ \left[ 0,\cos \left( 1 \right) \right] $ but we know that range of cosine function is $ \left[ -1,1 \right] $ . So we have $ -1<0<\cos \left( 1 \right)<1 $ . So the domain for cosec inverse function is $ \left[ 0,\cos \left( 1 \right) \right] $ and cosec inverse function cannot take values from $ \left( -1,1 \right) $ . So option A is not correct.\[\]
B. We are given $ x\in R $ . We have already prove that $ {{\operatorname{cosec}}^{-1}}\left( \cos x \right) $ is not real if $ x\in \left[ -1,1 \right] $ . So $ x $ is may not be real for all $ x\in R $ . Hence option B is incorrect.\[\]
C. $ x $ is an odd multiple of $ \dfrac{\pi }{2} $ which means for some $ n\in \mathsf{\mathbb{Z}} $ we have $ x=\left( 2n+1 \right)\dfrac{\pi }{2} $ for $ n=0 $ we have $ x=\left( 2\cdot 0+1 \right)\dfrac{\pi }{2}=\dfrac{\pi }{2} $ . Then we have $ \cos x=\cos \left( \dfrac{\pi }{2} \right)=0 $ but inverse cosec function is not defined for $ x=0 $ since $ 0\in \left[ -1,1 \right] $ . So option $ C $ is not correct.\[\]
D. We are given $ x $ is multiple of $ \pi $ which means $ x=n\pi ,n\in \mathsf{\mathbb{Z}} $ . If $ n $ is odd we get $ \cos x=-1 $ and if $ n $ is even we get $ \cos x=1 $ . The cosec inverse is well defined for $ x=-1,1 $ . So option D is only correct option.\[\]
Note:
We can alternatively solve by observing that cosec inverse function can take only those values at the intersection of domain of cosec inverse function and range cosine inverse function that is $ \left( \left( -\infty ,1 \right]\bigcup \left[ 1,\infty \right) \right)\bigcap \left[ -1,1 \right]=\left\{ -1,1 \right\} $ . We can find for what values of $ x $ the value of cosine $ \cos x=-1,1 $ . We note that mapping of $ \left[ -1,1 \right] $ on $ \left[ 0,1 \right] $ comes from the fact that $ \cos \left( -x \right)=\cos x,-\dfrac{\pi }{2} < -1 < 1 < \dfrac{\pi }{2} $ and $ \cos x\in \left[ 0,1 \right] $ for all $ x\in \left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right] $ .
Complete step by step answer:
We are given in the question a composite function $ {{\operatorname{cosec}}^{-1}}\left( \cos x \right) $ where the cosec inverse functions $ {{\operatorname{cosec}}^{-1}}x $ takes all the values returned by cosine function $ \cos x $ inside the bracket. We know from domain of cosec inverse function can take values as input which do not belong to the interval $ \left( -1,1 \right) $ .\[\]
A. We are given $ x\in \left[ -1,1 \right] $ . So cosine function $ \cos x $ c will take map this interval $ \left[ -1,1 \right] $ to the interval $ \left[ 0,\cos \left( 1 \right) \right] $ but we know that range of cosine function is $ \left[ -1,1 \right] $ . So we have $ -1<0<\cos \left( 1 \right)<1 $ . So the domain for cosec inverse function is $ \left[ 0,\cos \left( 1 \right) \right] $ and cosec inverse function cannot take values from $ \left( -1,1 \right) $ . So option A is not correct.\[\]
B. We are given $ x\in R $ . We have already prove that $ {{\operatorname{cosec}}^{-1}}\left( \cos x \right) $ is not real if $ x\in \left[ -1,1 \right] $ . So $ x $ is may not be real for all $ x\in R $ . Hence option B is incorrect.\[\]
C. $ x $ is an odd multiple of $ \dfrac{\pi }{2} $ which means for some $ n\in \mathsf{\mathbb{Z}} $ we have $ x=\left( 2n+1 \right)\dfrac{\pi }{2} $ for $ n=0 $ we have $ x=\left( 2\cdot 0+1 \right)\dfrac{\pi }{2}=\dfrac{\pi }{2} $ . Then we have $ \cos x=\cos \left( \dfrac{\pi }{2} \right)=0 $ but inverse cosec function is not defined for $ x=0 $ since $ 0\in \left[ -1,1 \right] $ . So option $ C $ is not correct.\[\]
D. We are given $ x $ is multiple of $ \pi $ which means $ x=n\pi ,n\in \mathsf{\mathbb{Z}} $ . If $ n $ is odd we get $ \cos x=-1 $ and if $ n $ is even we get $ \cos x=1 $ . The cosec inverse is well defined for $ x=-1,1 $ . So option D is only correct option.\[\]
Note:
We can alternatively solve by observing that cosec inverse function can take only those values at the intersection of domain of cosec inverse function and range cosine inverse function that is $ \left( \left( -\infty ,1 \right]\bigcup \left[ 1,\infty \right) \right)\bigcap \left[ -1,1 \right]=\left\{ -1,1 \right\} $ . We can find for what values of $ x $ the value of cosine $ \cos x=-1,1 $ . We note that mapping of $ \left[ -1,1 \right] $ on $ \left[ 0,1 \right] $ comes from the fact that $ \cos \left( -x \right)=\cos x,-\dfrac{\pi }{2} < -1 < 1 < \dfrac{\pi }{2} $ and $ \cos x\in \left[ 0,1 \right] $ for all $ x\in \left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right] $ .
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

