How do you solve \[\ln \left( {{x}^{7}} \right)-\ln \left( {{x}^{2}} \right)=5\]?
Answer
Verified
438.6k+ views
Hint:In the given question, we have been asked to find the value of ‘x’ and it is given that \[\ln \left( {{x}^{7}} \right)-\ln \left( {{x}^{2}} \right)=5\]. In order to find the value of ‘x’, first we will apply the quotient property of logarithm which states that \[{{\log }_{b}}m-{{\log }_{b}}n={{\log }_{b}}\left( \dfrac{m}{n} \right)\] . Then we need to apply the definition of logarithm, which states that \[\log \left( {{x}^{a}} \right)=a\log x\] and then simplify the equation further. After applying log formulae to the equation, we need to solve the equation in the way we solve general linear equations.
Formula used:
● The properties of logarithm to combine two natural logs;
Using the quotient property of logarithm, which states that \[{{\log }_{b}}m-{{\log }_{b}}n={{\log
}_{b}}\left( \dfrac{m}{n} \right)\]
● The definition of logarithm, says that \[\log \left( {{x}^{a}} \right)=a\log x\]
Complete step by step solution:
We have given that,
\[\ln \left( {{x}^{7}} \right)-\ln \left( {{x}^{2}} \right)=5\]
The properties of logarithm to combine two natural logs;
Using the quotient property of logarithm, i.e.
\[{{\log }_{b}}m-{{\log }_{b}}n={{\log }_{b}}\left( \dfrac{m}{n} \right)\]
Applying the property in the above equation, we get
\[\Rightarrow \ln \left( \dfrac{{{x}^{7}}}{{{x}^{2}}} \right)=5\]
On simplifying the above equation, we get
\[\Rightarrow \ln \left( {{x}^{5}} \right)=5\]
By the definition of logarithm, i.e.
\[\log \left( {{x}^{a}} \right)=a\log x\]
Using this, we get
\[\Rightarrow 5\ln \left( x \right)=5\]
Multiplying both the sides of the equation by 5, we get
\[\Rightarrow \dfrac{5\ln \left( x \right)}{5}=\dfrac{5}{5}\]
On simplifying the above, we get
\[\Rightarrow \ln \left( x \right)=1\]
Therefore,
\[\Rightarrow x=e\]
Thus, the value of ‘x’ equals to ‘e’ is the required solution.
Note: In the given question, we need to find the value of ‘x’. To solve these types of questions, we used the basic formulas of logarithm. Students should always be required to keep in mind all the formulae for solving the question easily. After applying log formulae to the equation, we need to solve the equation in the way we solve general linear equations.
Formula used:
● The properties of logarithm to combine two natural logs;
Using the quotient property of logarithm, which states that \[{{\log }_{b}}m-{{\log }_{b}}n={{\log
}_{b}}\left( \dfrac{m}{n} \right)\]
● The definition of logarithm, says that \[\log \left( {{x}^{a}} \right)=a\log x\]
Complete step by step solution:
We have given that,
\[\ln \left( {{x}^{7}} \right)-\ln \left( {{x}^{2}} \right)=5\]
The properties of logarithm to combine two natural logs;
Using the quotient property of logarithm, i.e.
\[{{\log }_{b}}m-{{\log }_{b}}n={{\log }_{b}}\left( \dfrac{m}{n} \right)\]
Applying the property in the above equation, we get
\[\Rightarrow \ln \left( \dfrac{{{x}^{7}}}{{{x}^{2}}} \right)=5\]
On simplifying the above equation, we get
\[\Rightarrow \ln \left( {{x}^{5}} \right)=5\]
By the definition of logarithm, i.e.
\[\log \left( {{x}^{a}} \right)=a\log x\]
Using this, we get
\[\Rightarrow 5\ln \left( x \right)=5\]
Multiplying both the sides of the equation by 5, we get
\[\Rightarrow \dfrac{5\ln \left( x \right)}{5}=\dfrac{5}{5}\]
On simplifying the above, we get
\[\Rightarrow \ln \left( x \right)=1\]
Therefore,
\[\Rightarrow x=e\]
Thus, the value of ‘x’ equals to ‘e’ is the required solution.
Note: In the given question, we need to find the value of ‘x’. To solve these types of questions, we used the basic formulas of logarithm. Students should always be required to keep in mind all the formulae for solving the question easily. After applying log formulae to the equation, we need to solve the equation in the way we solve general linear equations.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE
Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE
With reference to graphite and diamond which of the class 11 chemistry CBSE
A certain household has consumed 250 units of energy class 11 physics CBSE
The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE
What is the formula mass of the iodine molecule class 11 chemistry CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
10 examples of friction in our daily life
What problem did Carter face when he reached the mummy class 11 english CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE