
How do you solve \[\ln \left( {{x}^{7}} \right)-\ln \left( {{x}^{2}} \right)=5\]?
Answer
527.7k+ views
Hint:In the given question, we have been asked to find the value of ‘x’ and it is given that \[\ln \left( {{x}^{7}} \right)-\ln \left( {{x}^{2}} \right)=5\]. In order to find the value of ‘x’, first we will apply the quotient property of logarithm which states that \[{{\log }_{b}}m-{{\log }_{b}}n={{\log }_{b}}\left( \dfrac{m}{n} \right)\] . Then we need to apply the definition of logarithm, which states that \[\log \left( {{x}^{a}} \right)=a\log x\] and then simplify the equation further. After applying log formulae to the equation, we need to solve the equation in the way we solve general linear equations.
Formula used:
● The properties of logarithm to combine two natural logs;
Using the quotient property of logarithm, which states that \[{{\log }_{b}}m-{{\log }_{b}}n={{\log
}_{b}}\left( \dfrac{m}{n} \right)\]
● The definition of logarithm, says that \[\log \left( {{x}^{a}} \right)=a\log x\]
Complete step by step solution:
We have given that,
\[\ln \left( {{x}^{7}} \right)-\ln \left( {{x}^{2}} \right)=5\]
The properties of logarithm to combine two natural logs;
Using the quotient property of logarithm, i.e.
\[{{\log }_{b}}m-{{\log }_{b}}n={{\log }_{b}}\left( \dfrac{m}{n} \right)\]
Applying the property in the above equation, we get
\[\Rightarrow \ln \left( \dfrac{{{x}^{7}}}{{{x}^{2}}} \right)=5\]
On simplifying the above equation, we get
\[\Rightarrow \ln \left( {{x}^{5}} \right)=5\]
By the definition of logarithm, i.e.
\[\log \left( {{x}^{a}} \right)=a\log x\]
Using this, we get
\[\Rightarrow 5\ln \left( x \right)=5\]
Multiplying both the sides of the equation by 5, we get
\[\Rightarrow \dfrac{5\ln \left( x \right)}{5}=\dfrac{5}{5}\]
On simplifying the above, we get
\[\Rightarrow \ln \left( x \right)=1\]
Therefore,
\[\Rightarrow x=e\]
Thus, the value of ‘x’ equals to ‘e’ is the required solution.
Note: In the given question, we need to find the value of ‘x’. To solve these types of questions, we used the basic formulas of logarithm. Students should always be required to keep in mind all the formulae for solving the question easily. After applying log formulae to the equation, we need to solve the equation in the way we solve general linear equations.
Formula used:
● The properties of logarithm to combine two natural logs;
Using the quotient property of logarithm, which states that \[{{\log }_{b}}m-{{\log }_{b}}n={{\log
}_{b}}\left( \dfrac{m}{n} \right)\]
● The definition of logarithm, says that \[\log \left( {{x}^{a}} \right)=a\log x\]
Complete step by step solution:
We have given that,
\[\ln \left( {{x}^{7}} \right)-\ln \left( {{x}^{2}} \right)=5\]
The properties of logarithm to combine two natural logs;
Using the quotient property of logarithm, i.e.
\[{{\log }_{b}}m-{{\log }_{b}}n={{\log }_{b}}\left( \dfrac{m}{n} \right)\]
Applying the property in the above equation, we get
\[\Rightarrow \ln \left( \dfrac{{{x}^{7}}}{{{x}^{2}}} \right)=5\]
On simplifying the above equation, we get
\[\Rightarrow \ln \left( {{x}^{5}} \right)=5\]
By the definition of logarithm, i.e.
\[\log \left( {{x}^{a}} \right)=a\log x\]
Using this, we get
\[\Rightarrow 5\ln \left( x \right)=5\]
Multiplying both the sides of the equation by 5, we get
\[\Rightarrow \dfrac{5\ln \left( x \right)}{5}=\dfrac{5}{5}\]
On simplifying the above, we get
\[\Rightarrow \ln \left( x \right)=1\]
Therefore,
\[\Rightarrow x=e\]
Thus, the value of ‘x’ equals to ‘e’ is the required solution.
Note: In the given question, we need to find the value of ‘x’. To solve these types of questions, we used the basic formulas of logarithm. Students should always be required to keep in mind all the formulae for solving the question easily. After applying log formulae to the equation, we need to solve the equation in the way we solve general linear equations.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

How many 5 digit telephone numbers can be constructed class 11 maths CBSE

Draw a well labelled diagram of reflex arc and explain class 11 biology CBSE

What is the difference between noise and music Can class 11 physics CBSE

Trending doubts
In what year Guru Nanak Dev ji was born A15 April 1469 class 11 social science CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

10 examples of friction in our daily life

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

