
How do you solve \[\ln \left( {{x}^{7}} \right)-\ln \left( {{x}^{2}} \right)=5\]?
Answer
533.4k+ views
Hint:In the given question, we have been asked to find the value of ‘x’ and it is given that \[\ln \left( {{x}^{7}} \right)-\ln \left( {{x}^{2}} \right)=5\]. In order to find the value of ‘x’, first we will apply the quotient property of logarithm which states that \[{{\log }_{b}}m-{{\log }_{b}}n={{\log }_{b}}\left( \dfrac{m}{n} \right)\] . Then we need to apply the definition of logarithm, which states that \[\log \left( {{x}^{a}} \right)=a\log x\] and then simplify the equation further. After applying log formulae to the equation, we need to solve the equation in the way we solve general linear equations.
Formula used:
● The properties of logarithm to combine two natural logs;
Using the quotient property of logarithm, which states that \[{{\log }_{b}}m-{{\log }_{b}}n={{\log
}_{b}}\left( \dfrac{m}{n} \right)\]
● The definition of logarithm, says that \[\log \left( {{x}^{a}} \right)=a\log x\]
Complete step by step solution:
We have given that,
\[\ln \left( {{x}^{7}} \right)-\ln \left( {{x}^{2}} \right)=5\]
The properties of logarithm to combine two natural logs;
Using the quotient property of logarithm, i.e.
\[{{\log }_{b}}m-{{\log }_{b}}n={{\log }_{b}}\left( \dfrac{m}{n} \right)\]
Applying the property in the above equation, we get
\[\Rightarrow \ln \left( \dfrac{{{x}^{7}}}{{{x}^{2}}} \right)=5\]
On simplifying the above equation, we get
\[\Rightarrow \ln \left( {{x}^{5}} \right)=5\]
By the definition of logarithm, i.e.
\[\log \left( {{x}^{a}} \right)=a\log x\]
Using this, we get
\[\Rightarrow 5\ln \left( x \right)=5\]
Multiplying both the sides of the equation by 5, we get
\[\Rightarrow \dfrac{5\ln \left( x \right)}{5}=\dfrac{5}{5}\]
On simplifying the above, we get
\[\Rightarrow \ln \left( x \right)=1\]
Therefore,
\[\Rightarrow x=e\]
Thus, the value of ‘x’ equals to ‘e’ is the required solution.
Note: In the given question, we need to find the value of ‘x’. To solve these types of questions, we used the basic formulas of logarithm. Students should always be required to keep in mind all the formulae for solving the question easily. After applying log formulae to the equation, we need to solve the equation in the way we solve general linear equations.
Formula used:
● The properties of logarithm to combine two natural logs;
Using the quotient property of logarithm, which states that \[{{\log }_{b}}m-{{\log }_{b}}n={{\log
}_{b}}\left( \dfrac{m}{n} \right)\]
● The definition of logarithm, says that \[\log \left( {{x}^{a}} \right)=a\log x\]
Complete step by step solution:
We have given that,
\[\ln \left( {{x}^{7}} \right)-\ln \left( {{x}^{2}} \right)=5\]
The properties of logarithm to combine two natural logs;
Using the quotient property of logarithm, i.e.
\[{{\log }_{b}}m-{{\log }_{b}}n={{\log }_{b}}\left( \dfrac{m}{n} \right)\]
Applying the property in the above equation, we get
\[\Rightarrow \ln \left( \dfrac{{{x}^{7}}}{{{x}^{2}}} \right)=5\]
On simplifying the above equation, we get
\[\Rightarrow \ln \left( {{x}^{5}} \right)=5\]
By the definition of logarithm, i.e.
\[\log \left( {{x}^{a}} \right)=a\log x\]
Using this, we get
\[\Rightarrow 5\ln \left( x \right)=5\]
Multiplying both the sides of the equation by 5, we get
\[\Rightarrow \dfrac{5\ln \left( x \right)}{5}=\dfrac{5}{5}\]
On simplifying the above, we get
\[\Rightarrow \ln \left( x \right)=1\]
Therefore,
\[\Rightarrow x=e\]
Thus, the value of ‘x’ equals to ‘e’ is the required solution.
Note: In the given question, we need to find the value of ‘x’. To solve these types of questions, we used the basic formulas of logarithm. Students should always be required to keep in mind all the formulae for solving the question easily. After applying log formulae to the equation, we need to solve the equation in the way we solve general linear equations.
Recently Updated Pages
Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which type of resource is iron ore A Renewable B Biotic class 11 social science CBSE

10 examples of friction in our daily life

Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

