
Solve $ {\lim _{x \Rightarrow 0}}\dfrac{{\sqrt {2 + x} - \sqrt 2 }}{x} $
Answer
556.8k+ views
Hint: For finding the value of the given expression, we can substitute the given value of limit. But if we get an indeterminate form after the substitution, we can then use L'hospital's rule. In this, we take the derivatives individually of the term in numerator and denominator and then substitute the value of limit.
L'hospital's rule states that:
${\text{If }}{\lim _{x \Rightarrow 0}}\dfrac{{f\left( x \right)}}{{g\left( x \right)}} = \dfrac{0}{0}{\text{ or }}\dfrac{\infty }{\infty } \\
{\text{Then, }}{\lim _{x \Rightarrow 0}}\dfrac{{f\left( x \right)}}{{g\left( x \right)}} = {\lim _{x \Rightarrow 0}}\dfrac{{f'\left( x \right)}}{{g'\left( x \right)}} \\
$
To calculate the derivative remember:
$ \dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}} $
Complete step-by-step answer:
The given mathematical expression is $ {\lim _{x \Rightarrow 0}}\dfrac{{\sqrt {2 + x} - \sqrt 2 }}{x} $ .
The limit of the variable x is approaching 0. Its value can be determined by substituting this value of limit in the expression.
Substituting x = 0 in the given mathematical expression:
$
\dfrac{{\sqrt {2 + 0} - \sqrt 2 }}{0} \Rightarrow \dfrac{{\sqrt 2 - \sqrt 2 }}{0} \\
\Rightarrow \dfrac{0}{0} \;
$
As after substituting the limit, no determinate value is obtained. This form is called as indeterminate form $ \dfrac{0}{0} $
To evaluate the limits in such cases, L'hospital's rule is used. It states that:
$
{\text{If }}{\lim _{x \Rightarrow 0}}\dfrac{{f\left( x \right)}}{{g\left( x \right)}} = \dfrac{0}{0}{\text{ or }}\dfrac{\infty }{\infty } \\
{\text{Then, }}{\lim _{x \Rightarrow 0}}\dfrac{{f\left( x \right)}}{{g\left( x \right)}} = {\lim _{x \Rightarrow 0}}\dfrac{{f'\left( x \right)}}{{g'\left( x \right)}} \;
$
For the given expression,
$
f(x) = \sqrt {2 + x} - \sqrt 2 \\
g(x) = x \;
$
Their derivatives are given as:
\[
f'(x) = \dfrac{d}{{dx}}\left( {\sqrt {2 + x} - \sqrt 2 } \right) \\
\Rightarrow \dfrac{d}{{dx}}\left[ {{{\left( {2 + x} \right)}^{\dfrac{1}{2}}} - 0} \right] \\
\Rightarrow f'(x) = \dfrac{1}{{2\sqrt {2 + x} }} \\
g'(x) = \dfrac{d}{{dx}}\left( x \right) \\
\Rightarrow g'(x) = 1 \;
\]
And the value we obtained was:
$ {\lim _{x \Rightarrow 0}}\dfrac{{\sqrt {2 + x} - \sqrt 2 }}{x} = \dfrac{0}{0} $
Applying L hospital’s rule and substituting the values, we get:
$
{\lim _{x \Rightarrow 0}}\dfrac{{f\left( x \right)}}{{g\left( x \right)}} = {\lim _{x \Rightarrow 0}}\dfrac{{f'\left( x \right)}}{{g'\left( x \right)}} \\
\Rightarrow {\lim _{x \Rightarrow 0}}\dfrac{{f'\left( x \right)}}{{g'\left( x \right)}} = {\lim _{x \Rightarrow 0}}\dfrac{{\dfrac{1}{{2\sqrt {2 + x} }}}}{1} \;
$
Now substituting x = 0, we get:
$
\Rightarrow {\lim _{x \Rightarrow 0}}\dfrac{{f'\left( x \right)}}{{g'\left( x \right)}} = \dfrac{{\dfrac{1}{{2\sqrt {2 + 0} }}}}{1} \\
\Rightarrow {\lim _{x \Rightarrow 0}}\dfrac{{f'\left( x \right)}}{{g'\left( x \right)}} = \dfrac{1}{{2\sqrt 2 }} \;
$
And
$
{\lim _{x \Rightarrow 0}}\dfrac{{f\left( x \right)}}{{g\left( x \right)}} = {\lim _{x \Rightarrow 0}}\dfrac{{f'\left( x \right)}}{{g'\left( x \right)}} \\
\Rightarrow {\lim _{x \Rightarrow 0}}\dfrac{{f\left( x \right)}}{{g\left( x \right)}} = \dfrac{1}{{2\sqrt 2 }} \\
$
Therefore, the value the given expression $ {\lim _{x \Rightarrow 0}}\dfrac{{\sqrt {2 + x} - \sqrt 2 }}{x} $ is $ \dfrac{1}{{2\sqrt 2 }} $
So, the correct answer is “$ \dfrac{1}{{2\sqrt 2 }} $”.
Note: We can obtain indeterminate form sometimes even after applying L'hospital's rule, so it can be applied more than once until we get out of indeterminate form and obtain a determinate value. When the limits are applied to a function and it takes indeterminate form, then we can apply L hospital’s rule which is applicable to all kinds of indeterminate forms. Some common indeterminate forms are:
\[\dfrac{0}{0}{\text{, }}\dfrac{\infty }{\infty },{1^0}{\text{, }}{0^0}\]
L'hospital's rule states that:
${\text{If }}{\lim _{x \Rightarrow 0}}\dfrac{{f\left( x \right)}}{{g\left( x \right)}} = \dfrac{0}{0}{\text{ or }}\dfrac{\infty }{\infty } \\
{\text{Then, }}{\lim _{x \Rightarrow 0}}\dfrac{{f\left( x \right)}}{{g\left( x \right)}} = {\lim _{x \Rightarrow 0}}\dfrac{{f'\left( x \right)}}{{g'\left( x \right)}} \\
$
To calculate the derivative remember:
$ \dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}} $
Complete step-by-step answer:
The given mathematical expression is $ {\lim _{x \Rightarrow 0}}\dfrac{{\sqrt {2 + x} - \sqrt 2 }}{x} $ .
The limit of the variable x is approaching 0. Its value can be determined by substituting this value of limit in the expression.
Substituting x = 0 in the given mathematical expression:
$
\dfrac{{\sqrt {2 + 0} - \sqrt 2 }}{0} \Rightarrow \dfrac{{\sqrt 2 - \sqrt 2 }}{0} \\
\Rightarrow \dfrac{0}{0} \;
$
As after substituting the limit, no determinate value is obtained. This form is called as indeterminate form $ \dfrac{0}{0} $
To evaluate the limits in such cases, L'hospital's rule is used. It states that:
$
{\text{If }}{\lim _{x \Rightarrow 0}}\dfrac{{f\left( x \right)}}{{g\left( x \right)}} = \dfrac{0}{0}{\text{ or }}\dfrac{\infty }{\infty } \\
{\text{Then, }}{\lim _{x \Rightarrow 0}}\dfrac{{f\left( x \right)}}{{g\left( x \right)}} = {\lim _{x \Rightarrow 0}}\dfrac{{f'\left( x \right)}}{{g'\left( x \right)}} \;
$
For the given expression,
$
f(x) = \sqrt {2 + x} - \sqrt 2 \\
g(x) = x \;
$
Their derivatives are given as:
\[
f'(x) = \dfrac{d}{{dx}}\left( {\sqrt {2 + x} - \sqrt 2 } \right) \\
\Rightarrow \dfrac{d}{{dx}}\left[ {{{\left( {2 + x} \right)}^{\dfrac{1}{2}}} - 0} \right] \\
\Rightarrow f'(x) = \dfrac{1}{{2\sqrt {2 + x} }} \\
g'(x) = \dfrac{d}{{dx}}\left( x \right) \\
\Rightarrow g'(x) = 1 \;
\]
And the value we obtained was:
$ {\lim _{x \Rightarrow 0}}\dfrac{{\sqrt {2 + x} - \sqrt 2 }}{x} = \dfrac{0}{0} $
Applying L hospital’s rule and substituting the values, we get:
$
{\lim _{x \Rightarrow 0}}\dfrac{{f\left( x \right)}}{{g\left( x \right)}} = {\lim _{x \Rightarrow 0}}\dfrac{{f'\left( x \right)}}{{g'\left( x \right)}} \\
\Rightarrow {\lim _{x \Rightarrow 0}}\dfrac{{f'\left( x \right)}}{{g'\left( x \right)}} = {\lim _{x \Rightarrow 0}}\dfrac{{\dfrac{1}{{2\sqrt {2 + x} }}}}{1} \;
$
Now substituting x = 0, we get:
$
\Rightarrow {\lim _{x \Rightarrow 0}}\dfrac{{f'\left( x \right)}}{{g'\left( x \right)}} = \dfrac{{\dfrac{1}{{2\sqrt {2 + 0} }}}}{1} \\
\Rightarrow {\lim _{x \Rightarrow 0}}\dfrac{{f'\left( x \right)}}{{g'\left( x \right)}} = \dfrac{1}{{2\sqrt 2 }} \;
$
And
$
{\lim _{x \Rightarrow 0}}\dfrac{{f\left( x \right)}}{{g\left( x \right)}} = {\lim _{x \Rightarrow 0}}\dfrac{{f'\left( x \right)}}{{g'\left( x \right)}} \\
\Rightarrow {\lim _{x \Rightarrow 0}}\dfrac{{f\left( x \right)}}{{g\left( x \right)}} = \dfrac{1}{{2\sqrt 2 }} \\
$
Therefore, the value the given expression $ {\lim _{x \Rightarrow 0}}\dfrac{{\sqrt {2 + x} - \sqrt 2 }}{x} $ is $ \dfrac{1}{{2\sqrt 2 }} $
So, the correct answer is “$ \dfrac{1}{{2\sqrt 2 }} $”.
Note: We can obtain indeterminate form sometimes even after applying L'hospital's rule, so it can be applied more than once until we get out of indeterminate form and obtain a determinate value. When the limits are applied to a function and it takes indeterminate form, then we can apply L hospital’s rule which is applicable to all kinds of indeterminate forms. Some common indeterminate forms are:
\[\dfrac{0}{0}{\text{, }}\dfrac{\infty }{\infty },{1^0}{\text{, }}{0^0}\]
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Explain zero factorial class 11 maths CBSE

What is a periderm How does periderm formation take class 11 biology CBSE

