
Solve $ {\lim _{x \Rightarrow 0}}\dfrac{{\sqrt {2 + x} - \sqrt 2 }}{x} $
Answer
483k+ views
Hint: For finding the value of the given expression, we can substitute the given value of limit. But if we get an indeterminate form after the substitution, we can then use L'hospital's rule. In this, we take the derivatives individually of the term in numerator and denominator and then substitute the value of limit.
L'hospital's rule states that:
${\text{If }}{\lim _{x \Rightarrow 0}}\dfrac{{f\left( x \right)}}{{g\left( x \right)}} = \dfrac{0}{0}{\text{ or }}\dfrac{\infty }{\infty } \\
{\text{Then, }}{\lim _{x \Rightarrow 0}}\dfrac{{f\left( x \right)}}{{g\left( x \right)}} = {\lim _{x \Rightarrow 0}}\dfrac{{f'\left( x \right)}}{{g'\left( x \right)}} \\
$
To calculate the derivative remember:
$ \dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}} $
Complete step-by-step answer:
The given mathematical expression is $ {\lim _{x \Rightarrow 0}}\dfrac{{\sqrt {2 + x} - \sqrt 2 }}{x} $ .
The limit of the variable x is approaching 0. Its value can be determined by substituting this value of limit in the expression.
Substituting x = 0 in the given mathematical expression:
$
\dfrac{{\sqrt {2 + 0} - \sqrt 2 }}{0} \Rightarrow \dfrac{{\sqrt 2 - \sqrt 2 }}{0} \\
\Rightarrow \dfrac{0}{0} \;
$
As after substituting the limit, no determinate value is obtained. This form is called as indeterminate form $ \dfrac{0}{0} $
To evaluate the limits in such cases, L'hospital's rule is used. It states that:
$
{\text{If }}{\lim _{x \Rightarrow 0}}\dfrac{{f\left( x \right)}}{{g\left( x \right)}} = \dfrac{0}{0}{\text{ or }}\dfrac{\infty }{\infty } \\
{\text{Then, }}{\lim _{x \Rightarrow 0}}\dfrac{{f\left( x \right)}}{{g\left( x \right)}} = {\lim _{x \Rightarrow 0}}\dfrac{{f'\left( x \right)}}{{g'\left( x \right)}} \;
$
For the given expression,
$
f(x) = \sqrt {2 + x} - \sqrt 2 \\
g(x) = x \;
$
Their derivatives are given as:
\[
f'(x) = \dfrac{d}{{dx}}\left( {\sqrt {2 + x} - \sqrt 2 } \right) \\
\Rightarrow \dfrac{d}{{dx}}\left[ {{{\left( {2 + x} \right)}^{\dfrac{1}{2}}} - 0} \right] \\
\Rightarrow f'(x) = \dfrac{1}{{2\sqrt {2 + x} }} \\
g'(x) = \dfrac{d}{{dx}}\left( x \right) \\
\Rightarrow g'(x) = 1 \;
\]
And the value we obtained was:
$ {\lim _{x \Rightarrow 0}}\dfrac{{\sqrt {2 + x} - \sqrt 2 }}{x} = \dfrac{0}{0} $
Applying L hospital’s rule and substituting the values, we get:
$
{\lim _{x \Rightarrow 0}}\dfrac{{f\left( x \right)}}{{g\left( x \right)}} = {\lim _{x \Rightarrow 0}}\dfrac{{f'\left( x \right)}}{{g'\left( x \right)}} \\
\Rightarrow {\lim _{x \Rightarrow 0}}\dfrac{{f'\left( x \right)}}{{g'\left( x \right)}} = {\lim _{x \Rightarrow 0}}\dfrac{{\dfrac{1}{{2\sqrt {2 + x} }}}}{1} \;
$
Now substituting x = 0, we get:
$
\Rightarrow {\lim _{x \Rightarrow 0}}\dfrac{{f'\left( x \right)}}{{g'\left( x \right)}} = \dfrac{{\dfrac{1}{{2\sqrt {2 + 0} }}}}{1} \\
\Rightarrow {\lim _{x \Rightarrow 0}}\dfrac{{f'\left( x \right)}}{{g'\left( x \right)}} = \dfrac{1}{{2\sqrt 2 }} \;
$
And
$
{\lim _{x \Rightarrow 0}}\dfrac{{f\left( x \right)}}{{g\left( x \right)}} = {\lim _{x \Rightarrow 0}}\dfrac{{f'\left( x \right)}}{{g'\left( x \right)}} \\
\Rightarrow {\lim _{x \Rightarrow 0}}\dfrac{{f\left( x \right)}}{{g\left( x \right)}} = \dfrac{1}{{2\sqrt 2 }} \\
$
Therefore, the value the given expression $ {\lim _{x \Rightarrow 0}}\dfrac{{\sqrt {2 + x} - \sqrt 2 }}{x} $ is $ \dfrac{1}{{2\sqrt 2 }} $
So, the correct answer is “$ \dfrac{1}{{2\sqrt 2 }} $”.
Note: We can obtain indeterminate form sometimes even after applying L'hospital's rule, so it can be applied more than once until we get out of indeterminate form and obtain a determinate value. When the limits are applied to a function and it takes indeterminate form, then we can apply L hospital’s rule which is applicable to all kinds of indeterminate forms. Some common indeterminate forms are:
\[\dfrac{0}{0}{\text{, }}\dfrac{\infty }{\infty },{1^0}{\text{, }}{0^0}\]
L'hospital's rule states that:
${\text{If }}{\lim _{x \Rightarrow 0}}\dfrac{{f\left( x \right)}}{{g\left( x \right)}} = \dfrac{0}{0}{\text{ or }}\dfrac{\infty }{\infty } \\
{\text{Then, }}{\lim _{x \Rightarrow 0}}\dfrac{{f\left( x \right)}}{{g\left( x \right)}} = {\lim _{x \Rightarrow 0}}\dfrac{{f'\left( x \right)}}{{g'\left( x \right)}} \\
$
To calculate the derivative remember:
$ \dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}} $
Complete step-by-step answer:
The given mathematical expression is $ {\lim _{x \Rightarrow 0}}\dfrac{{\sqrt {2 + x} - \sqrt 2 }}{x} $ .
The limit of the variable x is approaching 0. Its value can be determined by substituting this value of limit in the expression.
Substituting x = 0 in the given mathematical expression:
$
\dfrac{{\sqrt {2 + 0} - \sqrt 2 }}{0} \Rightarrow \dfrac{{\sqrt 2 - \sqrt 2 }}{0} \\
\Rightarrow \dfrac{0}{0} \;
$
As after substituting the limit, no determinate value is obtained. This form is called as indeterminate form $ \dfrac{0}{0} $
To evaluate the limits in such cases, L'hospital's rule is used. It states that:
$
{\text{If }}{\lim _{x \Rightarrow 0}}\dfrac{{f\left( x \right)}}{{g\left( x \right)}} = \dfrac{0}{0}{\text{ or }}\dfrac{\infty }{\infty } \\
{\text{Then, }}{\lim _{x \Rightarrow 0}}\dfrac{{f\left( x \right)}}{{g\left( x \right)}} = {\lim _{x \Rightarrow 0}}\dfrac{{f'\left( x \right)}}{{g'\left( x \right)}} \;
$
For the given expression,
$
f(x) = \sqrt {2 + x} - \sqrt 2 \\
g(x) = x \;
$
Their derivatives are given as:
\[
f'(x) = \dfrac{d}{{dx}}\left( {\sqrt {2 + x} - \sqrt 2 } \right) \\
\Rightarrow \dfrac{d}{{dx}}\left[ {{{\left( {2 + x} \right)}^{\dfrac{1}{2}}} - 0} \right] \\
\Rightarrow f'(x) = \dfrac{1}{{2\sqrt {2 + x} }} \\
g'(x) = \dfrac{d}{{dx}}\left( x \right) \\
\Rightarrow g'(x) = 1 \;
\]
And the value we obtained was:
$ {\lim _{x \Rightarrow 0}}\dfrac{{\sqrt {2 + x} - \sqrt 2 }}{x} = \dfrac{0}{0} $
Applying L hospital’s rule and substituting the values, we get:
$
{\lim _{x \Rightarrow 0}}\dfrac{{f\left( x \right)}}{{g\left( x \right)}} = {\lim _{x \Rightarrow 0}}\dfrac{{f'\left( x \right)}}{{g'\left( x \right)}} \\
\Rightarrow {\lim _{x \Rightarrow 0}}\dfrac{{f'\left( x \right)}}{{g'\left( x \right)}} = {\lim _{x \Rightarrow 0}}\dfrac{{\dfrac{1}{{2\sqrt {2 + x} }}}}{1} \;
$
Now substituting x = 0, we get:
$
\Rightarrow {\lim _{x \Rightarrow 0}}\dfrac{{f'\left( x \right)}}{{g'\left( x \right)}} = \dfrac{{\dfrac{1}{{2\sqrt {2 + 0} }}}}{1} \\
\Rightarrow {\lim _{x \Rightarrow 0}}\dfrac{{f'\left( x \right)}}{{g'\left( x \right)}} = \dfrac{1}{{2\sqrt 2 }} \;
$
And
$
{\lim _{x \Rightarrow 0}}\dfrac{{f\left( x \right)}}{{g\left( x \right)}} = {\lim _{x \Rightarrow 0}}\dfrac{{f'\left( x \right)}}{{g'\left( x \right)}} \\
\Rightarrow {\lim _{x \Rightarrow 0}}\dfrac{{f\left( x \right)}}{{g\left( x \right)}} = \dfrac{1}{{2\sqrt 2 }} \\
$
Therefore, the value the given expression $ {\lim _{x \Rightarrow 0}}\dfrac{{\sqrt {2 + x} - \sqrt 2 }}{x} $ is $ \dfrac{1}{{2\sqrt 2 }} $
So, the correct answer is “$ \dfrac{1}{{2\sqrt 2 }} $”.
Note: We can obtain indeterminate form sometimes even after applying L'hospital's rule, so it can be applied more than once until we get out of indeterminate form and obtain a determinate value. When the limits are applied to a function and it takes indeterminate form, then we can apply L hospital’s rule which is applicable to all kinds of indeterminate forms. Some common indeterminate forms are:
\[\dfrac{0}{0}{\text{, }}\dfrac{\infty }{\infty },{1^0}{\text{, }}{0^0}\]
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Earth rotates from West to east ATrue BFalse class 6 social science CBSE

The easternmost longitude of India is A 97circ 25E class 6 social science CBSE

Write the given sentence in the passive voice Ann cant class 6 CBSE

Convert 1 foot into meters A030 meter B03048 meter-class-6-maths-CBSE

What is the LCM of 30 and 40 class 6 maths CBSE

Trending doubts
Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE

What is the difference between superposition and e class 11 physics CBSE

State and prove Bernoullis theorem class 11 physics CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
