
How do you solve ${{\left( x+\dfrac{1}{3} \right)}^{2}}-\dfrac{4}{9}=0$?
Answer
552k+ views
Hint: First we will simplify the power of the parenthesis by using the formula ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$. Then we will solve the obtained equation by using a suitable method. We will solve the obtained equation by using the quadratic formula.
Complete step by step solution:
We have been given an equation ${{\left( x+\dfrac{1}{3} \right)}^{2}}-\dfrac{4}{9}=0$
We have to solve the given equation.
Now, we know that ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$
Now, applying the formula in the given equation we will get
$\Rightarrow {{x}^{2}}+{{\left( \dfrac{1}{3} \right)}^{2}}+2\times x\times \dfrac{1}{3}-\dfrac{4}{9}=0$
Now, simplifying the above obtained equation we will get
\[\begin{align}
& \Rightarrow {{x}^{2}}+\dfrac{1}{9}+\dfrac{2x}{3}-\dfrac{4}{9}=0 \\
& \Rightarrow {{x}^{2}}-\dfrac{3}{9}+\dfrac{2x}{3}=0 \\
& \Rightarrow {{x}^{2}}+\dfrac{2x}{3}-\dfrac{1}{3}=0 \\
\end{align}\]
Now, we can solve the given equation by using a quadratic formula. Then we will get
$\Rightarrow x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$
Now, on comparing the obtained equation with the general equation $a{{x}^{2}}+bx+c=0$we will get the values as
$a=1,b=\dfrac{2}{3},c=\dfrac{-1}{3}$
Now, substituting the values we will get
$\Rightarrow x=\dfrac{-\left( \dfrac{2}{3} \right)\pm \sqrt{{{\left( \dfrac{2}{3} \right)}^{2}}-4\times 1\times \dfrac{-1}{3}}}{2\times 1}$
Now, simplifying the above obtained equation we will get
\[\begin{align}
& \Rightarrow x=\dfrac{-\left( \dfrac{2}{3} \right)\pm \sqrt{\dfrac{4}{9}+\dfrac{4}{3}}}{2} \\
& \Rightarrow x=\dfrac{-\left( \dfrac{2}{3} \right)\pm \sqrt{\dfrac{4+12}{9}}}{2} \\
& \Rightarrow x=\dfrac{-\left( \dfrac{2}{3} \right)\pm \sqrt{\dfrac{16}{9}}}{2} \\
& \Rightarrow x=\dfrac{-\left( \dfrac{2}{3} \right)\pm \dfrac{4}{3}}{2} \\
\end{align}\]
Now, we have to consider both signs one by one then we will get
$\Rightarrow x=\dfrac{-\left( \dfrac{2}{3} \right)+\dfrac{4}{3}}{2},x=\dfrac{-\left( \dfrac{2}{3} \right)-\dfrac{4}{3}}{2}$
Now, simplifying the obtained equations we will get
$\begin{align}
& \Rightarrow x=\dfrac{\dfrac{-2+4}{3}}{2},x=\dfrac{\dfrac{-2-4}{3}}{2} \\
& \Rightarrow x=\dfrac{\dfrac{2}{3}}{2},x=\dfrac{\dfrac{-6}{3}}{2} \\
& \Rightarrow x=\dfrac{2}{3}\times \dfrac{1}{2},x=\dfrac{-2}{2} \\
\end{align}$
Now, on simplifying the above equation we will get
$\Rightarrow x=\dfrac{1}{3},x=-1$
Hence on solving the given equation we get the values of x as $-1,\dfrac{1}{3}$.
Note: Alternatively we can solve the given equation as:
$\Rightarrow {{\left( x+\dfrac{1}{3} \right)}^{2}}-\dfrac{4}{9}=0$
We can rewrite the given equation as
$\Rightarrow {{\left( x+\dfrac{1}{3} \right)}^{2}}=\dfrac{4}{9}$
Now, taking the square root both sides we will get
$\Rightarrow \sqrt{{{\left( x+\dfrac{1}{3} \right)}^{2}}}=\sqrt{\dfrac{4}{9}}$
Now, simplifying the above obtained equation we will get
$\Rightarrow x+\dfrac{1}{3}=\pm \dfrac{2}{3}$
Now, simplifying the above obtained equation we will get
$\Rightarrow x+\dfrac{1}{3}=\dfrac{2}{3}$ and $x+\dfrac{1}{3}=-\dfrac{2}{3}$
$\Rightarrow x=\dfrac{2}{3}-\dfrac{1}{3}$ and $x=-\dfrac{2}{3}-\dfrac{1}{3}$
$\Rightarrow x=\dfrac{2-1}{3}$ and $ x=\dfrac{-2-1}{3}$
$\Rightarrow x=\dfrac{1}{3}$ and $ x=\dfrac{-3}{3}=-1$
Hence we get two values of x as $-1,\dfrac{1}{3}$ .
Complete step by step solution:
We have been given an equation ${{\left( x+\dfrac{1}{3} \right)}^{2}}-\dfrac{4}{9}=0$
We have to solve the given equation.
Now, we know that ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$
Now, applying the formula in the given equation we will get
$\Rightarrow {{x}^{2}}+{{\left( \dfrac{1}{3} \right)}^{2}}+2\times x\times \dfrac{1}{3}-\dfrac{4}{9}=0$
Now, simplifying the above obtained equation we will get
\[\begin{align}
& \Rightarrow {{x}^{2}}+\dfrac{1}{9}+\dfrac{2x}{3}-\dfrac{4}{9}=0 \\
& \Rightarrow {{x}^{2}}-\dfrac{3}{9}+\dfrac{2x}{3}=0 \\
& \Rightarrow {{x}^{2}}+\dfrac{2x}{3}-\dfrac{1}{3}=0 \\
\end{align}\]
Now, we can solve the given equation by using a quadratic formula. Then we will get
$\Rightarrow x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$
Now, on comparing the obtained equation with the general equation $a{{x}^{2}}+bx+c=0$we will get the values as
$a=1,b=\dfrac{2}{3},c=\dfrac{-1}{3}$
Now, substituting the values we will get
$\Rightarrow x=\dfrac{-\left( \dfrac{2}{3} \right)\pm \sqrt{{{\left( \dfrac{2}{3} \right)}^{2}}-4\times 1\times \dfrac{-1}{3}}}{2\times 1}$
Now, simplifying the above obtained equation we will get
\[\begin{align}
& \Rightarrow x=\dfrac{-\left( \dfrac{2}{3} \right)\pm \sqrt{\dfrac{4}{9}+\dfrac{4}{3}}}{2} \\
& \Rightarrow x=\dfrac{-\left( \dfrac{2}{3} \right)\pm \sqrt{\dfrac{4+12}{9}}}{2} \\
& \Rightarrow x=\dfrac{-\left( \dfrac{2}{3} \right)\pm \sqrt{\dfrac{16}{9}}}{2} \\
& \Rightarrow x=\dfrac{-\left( \dfrac{2}{3} \right)\pm \dfrac{4}{3}}{2} \\
\end{align}\]
Now, we have to consider both signs one by one then we will get
$\Rightarrow x=\dfrac{-\left( \dfrac{2}{3} \right)+\dfrac{4}{3}}{2},x=\dfrac{-\left( \dfrac{2}{3} \right)-\dfrac{4}{3}}{2}$
Now, simplifying the obtained equations we will get
$\begin{align}
& \Rightarrow x=\dfrac{\dfrac{-2+4}{3}}{2},x=\dfrac{\dfrac{-2-4}{3}}{2} \\
& \Rightarrow x=\dfrac{\dfrac{2}{3}}{2},x=\dfrac{\dfrac{-6}{3}}{2} \\
& \Rightarrow x=\dfrac{2}{3}\times \dfrac{1}{2},x=\dfrac{-2}{2} \\
\end{align}$
Now, on simplifying the above equation we will get
$\Rightarrow x=\dfrac{1}{3},x=-1$
Hence on solving the given equation we get the values of x as $-1,\dfrac{1}{3}$.
Note: Alternatively we can solve the given equation as:
$\Rightarrow {{\left( x+\dfrac{1}{3} \right)}^{2}}-\dfrac{4}{9}=0$
We can rewrite the given equation as
$\Rightarrow {{\left( x+\dfrac{1}{3} \right)}^{2}}=\dfrac{4}{9}$
Now, taking the square root both sides we will get
$\Rightarrow \sqrt{{{\left( x+\dfrac{1}{3} \right)}^{2}}}=\sqrt{\dfrac{4}{9}}$
Now, simplifying the above obtained equation we will get
$\Rightarrow x+\dfrac{1}{3}=\pm \dfrac{2}{3}$
Now, simplifying the above obtained equation we will get
$\Rightarrow x+\dfrac{1}{3}=\dfrac{2}{3}$ and $x+\dfrac{1}{3}=-\dfrac{2}{3}$
$\Rightarrow x=\dfrac{2}{3}-\dfrac{1}{3}$ and $x=-\dfrac{2}{3}-\dfrac{1}{3}$
$\Rightarrow x=\dfrac{2-1}{3}$ and $ x=\dfrac{-2-1}{3}$
$\Rightarrow x=\dfrac{1}{3}$ and $ x=\dfrac{-3}{3}=-1$
Hence we get two values of x as $-1,\dfrac{1}{3}$ .
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

