
How do you solve $\left| {\sin x} \right| = \dfrac{{\sqrt 3 }}{2}$ in the interval $\left[ {0,{{360}^ \circ }} \right]$?
Answer
448.8k+ views
Hint:
First, find the values of $x$ satisfying $\sin x = \dfrac{{\sqrt 3 }}{2}$ using trigonometric properties.
Next, find the values of $x$ satisfying $\sin x = - \dfrac{{\sqrt 3 }}{2}$ using trigonometric properties. Next, find all values of $x$ in the interval $\left[ {0,{{360}^ \circ }} \right]$. Then, we will get all solutions of the given equation in the given interval.
Formula used:
1) $\sin \dfrac{\pi }{3} = \dfrac{{\sqrt 3 }}{2}$
2) $\sin \left( {\pi + x} \right) = - \sin x$
3) $\sin \left( {2\pi - x} \right) = - \sin x$
Complete step by step solution:
Given equation: $\left| {\sin x} \right| = \dfrac{{\sqrt 3 }}{2}$
We have to find all possible values of $x$ satisfying given equation in the interval $\left[ {0,{{360}^ \circ }} \right]$.
First, we will find the values of $x$ satisfying $\sin x = \dfrac{{\sqrt 3 }}{2}$.
So, take the inverse sine of both sides of the equation to extract $x$ from inside the sine.
$x = \arcsin \left( {\dfrac{{\sqrt 3 }}{2}} \right)$
Since, the exact value of $\arcsin \left( {\dfrac{{\sqrt 3 }}{2}} \right) = \dfrac{\pi }{3}$.
$ \Rightarrow x = \dfrac{\pi }{3}$
Since, the sine function is positive in the first and second quadrants.
So, to find the second solution, subtract the reference angle from $\pi $ to find the solution in the second quadrant.
$x = \pi - \dfrac{\pi }{3}$
$ \Rightarrow x = \dfrac{{2\pi }}{3}$
Since, the period of the $\sin x$ function is $2\pi $ so values will repeat every $2\pi $ radians in both directions.
$x = \dfrac{\pi }{3} + 2n\pi ,\dfrac{{2\pi }}{3} + 2n\pi $, for any integer $n$.
Now, we will find the values of $x$ satisfying $\sin x = - \dfrac{{\sqrt 3 }}{2}$…(i)
So, using the property $\sin \left( {\pi + x} \right) = - \sin x$ and $\sin \dfrac{\pi }{3} = \dfrac{{\sqrt 3 }}{2}$ in equation (i).
$ \Rightarrow \sin x = - \sin \dfrac{\pi }{3}$
$ \Rightarrow \sin x = \sin \left( {\pi + \dfrac{\pi }{3}} \right)$
$ \Rightarrow x = \dfrac{{4\pi }}{3}$
Now, using the property $\sin \left( {2\pi - x} \right) = - \sin x$ and $\sin \dfrac{\pi }{3} = \dfrac{{\sqrt 3 }}{2}$ in equation (i).
$ \Rightarrow \sin x = - \sin \dfrac{\pi }{3}$
$ \Rightarrow \sin x = \sin \left( {2\pi - \dfrac{\pi }{3}} \right)$
$ \Rightarrow x = \dfrac{{5\pi }}{3}$
Since, the period of the $\sin x$ function is $2\pi $ so values will repeat every $2\pi $ radians in both directions.
$x = \dfrac{{4\pi }}{3} + 2n\pi ,\dfrac{{5\pi }}{3} + 2n\pi $, for any integer $n$.
Now, find all values of $x$ in the interval $\left[ {0,{{360}^ \circ }} \right]$.
Since, it is given that $x \in \left[ {0,{{360}^ \circ }} \right]$, hence put $n = 0$ in the general solution.
So, putting $n = 0$ in $x = \dfrac{\pi }{3} + 2n\pi ,\dfrac{{2\pi }}{3} + 2n\pi $, we get
$x = \dfrac{\pi }{3},\dfrac{{2\pi }}{3}$
Now, putting $n = 0$ in $x = \dfrac{{4\pi }}{3} + 2n\pi ,\dfrac{{5\pi }}{3} + 2n\pi $,we get
$x = \dfrac{{4\pi }}{3},\dfrac{{5\pi }}{3}$
Thus, $x = \dfrac{\pi }{3},\dfrac{{2\pi }}{3},\dfrac{{4\pi }}{3},\dfrac{{5\pi }}{3}$ or $x = {60^ \circ },{120^ \circ },{240^ \circ },{300^ \circ }$.
Final solution: Hence, $x = \dfrac{\pi }{3},\dfrac{{2\pi }}{3},\dfrac{{4\pi }}{3},\dfrac{{5\pi }}{3}$ or $x = {60^ \circ },{120^ \circ },{240^ \circ },{300^ \circ }$ are solutions of the given equation in the interval $\left[ {0,{{360}^ \circ }} \right]$.
Note:
In above question, we can find the solutions of given equation by plotting the equation, $\left| {\sin x} \right| = \dfrac{{\sqrt 3 }}{2}$ on graph paper and determine all solutions which lie in the interval, $\left[ {0,{{360}^ \circ }} \right]$.
From the graph paper, we can see that there are four values of $x$ in the interval $\left[ {0,{{360}^ \circ }} \right]$.
So, these will be the solutions of the given equation in the given interval.
Final solution: Hence, $x = \dfrac{\pi }{3},\dfrac{{2\pi }}{3},\dfrac{{4\pi }}{3},\dfrac{{5\pi }}{3}$ or $x = {60^ \circ },{120^ \circ },{240^ \circ },{300^ \circ }$ are solutions of the given equation in the interval $\left[ {0,{{360}^ \circ }} \right]$.
First, find the values of $x$ satisfying $\sin x = \dfrac{{\sqrt 3 }}{2}$ using trigonometric properties.
Next, find the values of $x$ satisfying $\sin x = - \dfrac{{\sqrt 3 }}{2}$ using trigonometric properties. Next, find all values of $x$ in the interval $\left[ {0,{{360}^ \circ }} \right]$. Then, we will get all solutions of the given equation in the given interval.
Formula used:
1) $\sin \dfrac{\pi }{3} = \dfrac{{\sqrt 3 }}{2}$
2) $\sin \left( {\pi + x} \right) = - \sin x$
3) $\sin \left( {2\pi - x} \right) = - \sin x$
Complete step by step solution:
Given equation: $\left| {\sin x} \right| = \dfrac{{\sqrt 3 }}{2}$
We have to find all possible values of $x$ satisfying given equation in the interval $\left[ {0,{{360}^ \circ }} \right]$.
First, we will find the values of $x$ satisfying $\sin x = \dfrac{{\sqrt 3 }}{2}$.
So, take the inverse sine of both sides of the equation to extract $x$ from inside the sine.
$x = \arcsin \left( {\dfrac{{\sqrt 3 }}{2}} \right)$
Since, the exact value of $\arcsin \left( {\dfrac{{\sqrt 3 }}{2}} \right) = \dfrac{\pi }{3}$.
$ \Rightarrow x = \dfrac{\pi }{3}$
Since, the sine function is positive in the first and second quadrants.
So, to find the second solution, subtract the reference angle from $\pi $ to find the solution in the second quadrant.
$x = \pi - \dfrac{\pi }{3}$
$ \Rightarrow x = \dfrac{{2\pi }}{3}$
Since, the period of the $\sin x$ function is $2\pi $ so values will repeat every $2\pi $ radians in both directions.
$x = \dfrac{\pi }{3} + 2n\pi ,\dfrac{{2\pi }}{3} + 2n\pi $, for any integer $n$.
Now, we will find the values of $x$ satisfying $\sin x = - \dfrac{{\sqrt 3 }}{2}$…(i)
So, using the property $\sin \left( {\pi + x} \right) = - \sin x$ and $\sin \dfrac{\pi }{3} = \dfrac{{\sqrt 3 }}{2}$ in equation (i).
$ \Rightarrow \sin x = - \sin \dfrac{\pi }{3}$
$ \Rightarrow \sin x = \sin \left( {\pi + \dfrac{\pi }{3}} \right)$
$ \Rightarrow x = \dfrac{{4\pi }}{3}$
Now, using the property $\sin \left( {2\pi - x} \right) = - \sin x$ and $\sin \dfrac{\pi }{3} = \dfrac{{\sqrt 3 }}{2}$ in equation (i).
$ \Rightarrow \sin x = - \sin \dfrac{\pi }{3}$
$ \Rightarrow \sin x = \sin \left( {2\pi - \dfrac{\pi }{3}} \right)$
$ \Rightarrow x = \dfrac{{5\pi }}{3}$
Since, the period of the $\sin x$ function is $2\pi $ so values will repeat every $2\pi $ radians in both directions.
$x = \dfrac{{4\pi }}{3} + 2n\pi ,\dfrac{{5\pi }}{3} + 2n\pi $, for any integer $n$.
Now, find all values of $x$ in the interval $\left[ {0,{{360}^ \circ }} \right]$.
Since, it is given that $x \in \left[ {0,{{360}^ \circ }} \right]$, hence put $n = 0$ in the general solution.
So, putting $n = 0$ in $x = \dfrac{\pi }{3} + 2n\pi ,\dfrac{{2\pi }}{3} + 2n\pi $, we get
$x = \dfrac{\pi }{3},\dfrac{{2\pi }}{3}$
Now, putting $n = 0$ in $x = \dfrac{{4\pi }}{3} + 2n\pi ,\dfrac{{5\pi }}{3} + 2n\pi $,we get
$x = \dfrac{{4\pi }}{3},\dfrac{{5\pi }}{3}$
Thus, $x = \dfrac{\pi }{3},\dfrac{{2\pi }}{3},\dfrac{{4\pi }}{3},\dfrac{{5\pi }}{3}$ or $x = {60^ \circ },{120^ \circ },{240^ \circ },{300^ \circ }$.
Final solution: Hence, $x = \dfrac{\pi }{3},\dfrac{{2\pi }}{3},\dfrac{{4\pi }}{3},\dfrac{{5\pi }}{3}$ or $x = {60^ \circ },{120^ \circ },{240^ \circ },{300^ \circ }$ are solutions of the given equation in the interval $\left[ {0,{{360}^ \circ }} \right]$.
Note:
In above question, we can find the solutions of given equation by plotting the equation, $\left| {\sin x} \right| = \dfrac{{\sqrt 3 }}{2}$ on graph paper and determine all solutions which lie in the interval, $\left[ {0,{{360}^ \circ }} \right]$.

From the graph paper, we can see that there are four values of $x$ in the interval $\left[ {0,{{360}^ \circ }} \right]$.
So, these will be the solutions of the given equation in the given interval.
Final solution: Hence, $x = \dfrac{\pi }{3},\dfrac{{2\pi }}{3},\dfrac{{4\pi }}{3},\dfrac{{5\pi }}{3}$ or $x = {60^ \circ },{120^ \circ },{240^ \circ },{300^ \circ }$ are solutions of the given equation in the interval $\left[ {0,{{360}^ \circ }} \right]$.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Trending doubts
Is Cellular respiration an Oxidation or Reduction class 11 chemistry CBSE

In electron dot structure the valence shell electrons class 11 chemistry CBSE

What is the Pitti Island famous for ABird Sanctuary class 11 social science CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE
