
How do you solve $\left| {\sin x} \right| = \dfrac{{\sqrt 3 }}{2}$ in the interval $\left[ {0,{{360}^ \circ }} \right]$?
Answer
531.6k+ views
Hint:
First, find the values of $x$ satisfying $\sin x = \dfrac{{\sqrt 3 }}{2}$ using trigonometric properties.
Next, find the values of $x$ satisfying $\sin x = - \dfrac{{\sqrt 3 }}{2}$ using trigonometric properties. Next, find all values of $x$ in the interval $\left[ {0,{{360}^ \circ }} \right]$. Then, we will get all solutions of the given equation in the given interval.
Formula used:
1) $\sin \dfrac{\pi }{3} = \dfrac{{\sqrt 3 }}{2}$
2) $\sin \left( {\pi + x} \right) = - \sin x$
3) $\sin \left( {2\pi - x} \right) = - \sin x$
Complete step by step solution:
Given equation: $\left| {\sin x} \right| = \dfrac{{\sqrt 3 }}{2}$
We have to find all possible values of $x$ satisfying given equation in the interval $\left[ {0,{{360}^ \circ }} \right]$.
First, we will find the values of $x$ satisfying $\sin x = \dfrac{{\sqrt 3 }}{2}$.
So, take the inverse sine of both sides of the equation to extract $x$ from inside the sine.
$x = \arcsin \left( {\dfrac{{\sqrt 3 }}{2}} \right)$
Since, the exact value of $\arcsin \left( {\dfrac{{\sqrt 3 }}{2}} \right) = \dfrac{\pi }{3}$.
$ \Rightarrow x = \dfrac{\pi }{3}$
Since, the sine function is positive in the first and second quadrants.
So, to find the second solution, subtract the reference angle from $\pi $ to find the solution in the second quadrant.
$x = \pi - \dfrac{\pi }{3}$
$ \Rightarrow x = \dfrac{{2\pi }}{3}$
Since, the period of the $\sin x$ function is $2\pi $ so values will repeat every $2\pi $ radians in both directions.
$x = \dfrac{\pi }{3} + 2n\pi ,\dfrac{{2\pi }}{3} + 2n\pi $, for any integer $n$.
Now, we will find the values of $x$ satisfying $\sin x = - \dfrac{{\sqrt 3 }}{2}$…(i)
So, using the property $\sin \left( {\pi + x} \right) = - \sin x$ and $\sin \dfrac{\pi }{3} = \dfrac{{\sqrt 3 }}{2}$ in equation (i).
$ \Rightarrow \sin x = - \sin \dfrac{\pi }{3}$
$ \Rightarrow \sin x = \sin \left( {\pi + \dfrac{\pi }{3}} \right)$
$ \Rightarrow x = \dfrac{{4\pi }}{3}$
Now, using the property $\sin \left( {2\pi - x} \right) = - \sin x$ and $\sin \dfrac{\pi }{3} = \dfrac{{\sqrt 3 }}{2}$ in equation (i).
$ \Rightarrow \sin x = - \sin \dfrac{\pi }{3}$
$ \Rightarrow \sin x = \sin \left( {2\pi - \dfrac{\pi }{3}} \right)$
$ \Rightarrow x = \dfrac{{5\pi }}{3}$
Since, the period of the $\sin x$ function is $2\pi $ so values will repeat every $2\pi $ radians in both directions.
$x = \dfrac{{4\pi }}{3} + 2n\pi ,\dfrac{{5\pi }}{3} + 2n\pi $, for any integer $n$.
Now, find all values of $x$ in the interval $\left[ {0,{{360}^ \circ }} \right]$.
Since, it is given that $x \in \left[ {0,{{360}^ \circ }} \right]$, hence put $n = 0$ in the general solution.
So, putting $n = 0$ in $x = \dfrac{\pi }{3} + 2n\pi ,\dfrac{{2\pi }}{3} + 2n\pi $, we get
$x = \dfrac{\pi }{3},\dfrac{{2\pi }}{3}$
Now, putting $n = 0$ in $x = \dfrac{{4\pi }}{3} + 2n\pi ,\dfrac{{5\pi }}{3} + 2n\pi $,we get
$x = \dfrac{{4\pi }}{3},\dfrac{{5\pi }}{3}$
Thus, $x = \dfrac{\pi }{3},\dfrac{{2\pi }}{3},\dfrac{{4\pi }}{3},\dfrac{{5\pi }}{3}$ or $x = {60^ \circ },{120^ \circ },{240^ \circ },{300^ \circ }$.
Final solution: Hence, $x = \dfrac{\pi }{3},\dfrac{{2\pi }}{3},\dfrac{{4\pi }}{3},\dfrac{{5\pi }}{3}$ or $x = {60^ \circ },{120^ \circ },{240^ \circ },{300^ \circ }$ are solutions of the given equation in the interval $\left[ {0,{{360}^ \circ }} \right]$.
Note:
In above question, we can find the solutions of given equation by plotting the equation, $\left| {\sin x} \right| = \dfrac{{\sqrt 3 }}{2}$ on graph paper and determine all solutions which lie in the interval, $\left[ {0,{{360}^ \circ }} \right]$.
From the graph paper, we can see that there are four values of $x$ in the interval $\left[ {0,{{360}^ \circ }} \right]$.
So, these will be the solutions of the given equation in the given interval.
Final solution: Hence, $x = \dfrac{\pi }{3},\dfrac{{2\pi }}{3},\dfrac{{4\pi }}{3},\dfrac{{5\pi }}{3}$ or $x = {60^ \circ },{120^ \circ },{240^ \circ },{300^ \circ }$ are solutions of the given equation in the interval $\left[ {0,{{360}^ \circ }} \right]$.
First, find the values of $x$ satisfying $\sin x = \dfrac{{\sqrt 3 }}{2}$ using trigonometric properties.
Next, find the values of $x$ satisfying $\sin x = - \dfrac{{\sqrt 3 }}{2}$ using trigonometric properties. Next, find all values of $x$ in the interval $\left[ {0,{{360}^ \circ }} \right]$. Then, we will get all solutions of the given equation in the given interval.
Formula used:
1) $\sin \dfrac{\pi }{3} = \dfrac{{\sqrt 3 }}{2}$
2) $\sin \left( {\pi + x} \right) = - \sin x$
3) $\sin \left( {2\pi - x} \right) = - \sin x$
Complete step by step solution:
Given equation: $\left| {\sin x} \right| = \dfrac{{\sqrt 3 }}{2}$
We have to find all possible values of $x$ satisfying given equation in the interval $\left[ {0,{{360}^ \circ }} \right]$.
First, we will find the values of $x$ satisfying $\sin x = \dfrac{{\sqrt 3 }}{2}$.
So, take the inverse sine of both sides of the equation to extract $x$ from inside the sine.
$x = \arcsin \left( {\dfrac{{\sqrt 3 }}{2}} \right)$
Since, the exact value of $\arcsin \left( {\dfrac{{\sqrt 3 }}{2}} \right) = \dfrac{\pi }{3}$.
$ \Rightarrow x = \dfrac{\pi }{3}$
Since, the sine function is positive in the first and second quadrants.
So, to find the second solution, subtract the reference angle from $\pi $ to find the solution in the second quadrant.
$x = \pi - \dfrac{\pi }{3}$
$ \Rightarrow x = \dfrac{{2\pi }}{3}$
Since, the period of the $\sin x$ function is $2\pi $ so values will repeat every $2\pi $ radians in both directions.
$x = \dfrac{\pi }{3} + 2n\pi ,\dfrac{{2\pi }}{3} + 2n\pi $, for any integer $n$.
Now, we will find the values of $x$ satisfying $\sin x = - \dfrac{{\sqrt 3 }}{2}$…(i)
So, using the property $\sin \left( {\pi + x} \right) = - \sin x$ and $\sin \dfrac{\pi }{3} = \dfrac{{\sqrt 3 }}{2}$ in equation (i).
$ \Rightarrow \sin x = - \sin \dfrac{\pi }{3}$
$ \Rightarrow \sin x = \sin \left( {\pi + \dfrac{\pi }{3}} \right)$
$ \Rightarrow x = \dfrac{{4\pi }}{3}$
Now, using the property $\sin \left( {2\pi - x} \right) = - \sin x$ and $\sin \dfrac{\pi }{3} = \dfrac{{\sqrt 3 }}{2}$ in equation (i).
$ \Rightarrow \sin x = - \sin \dfrac{\pi }{3}$
$ \Rightarrow \sin x = \sin \left( {2\pi - \dfrac{\pi }{3}} \right)$
$ \Rightarrow x = \dfrac{{5\pi }}{3}$
Since, the period of the $\sin x$ function is $2\pi $ so values will repeat every $2\pi $ radians in both directions.
$x = \dfrac{{4\pi }}{3} + 2n\pi ,\dfrac{{5\pi }}{3} + 2n\pi $, for any integer $n$.
Now, find all values of $x$ in the interval $\left[ {0,{{360}^ \circ }} \right]$.
Since, it is given that $x \in \left[ {0,{{360}^ \circ }} \right]$, hence put $n = 0$ in the general solution.
So, putting $n = 0$ in $x = \dfrac{\pi }{3} + 2n\pi ,\dfrac{{2\pi }}{3} + 2n\pi $, we get
$x = \dfrac{\pi }{3},\dfrac{{2\pi }}{3}$
Now, putting $n = 0$ in $x = \dfrac{{4\pi }}{3} + 2n\pi ,\dfrac{{5\pi }}{3} + 2n\pi $,we get
$x = \dfrac{{4\pi }}{3},\dfrac{{5\pi }}{3}$
Thus, $x = \dfrac{\pi }{3},\dfrac{{2\pi }}{3},\dfrac{{4\pi }}{3},\dfrac{{5\pi }}{3}$ or $x = {60^ \circ },{120^ \circ },{240^ \circ },{300^ \circ }$.
Final solution: Hence, $x = \dfrac{\pi }{3},\dfrac{{2\pi }}{3},\dfrac{{4\pi }}{3},\dfrac{{5\pi }}{3}$ or $x = {60^ \circ },{120^ \circ },{240^ \circ },{300^ \circ }$ are solutions of the given equation in the interval $\left[ {0,{{360}^ \circ }} \right]$.
Note:
In above question, we can find the solutions of given equation by plotting the equation, $\left| {\sin x} \right| = \dfrac{{\sqrt 3 }}{2}$ on graph paper and determine all solutions which lie in the interval, $\left[ {0,{{360}^ \circ }} \right]$.
From the graph paper, we can see that there are four values of $x$ in the interval $\left[ {0,{{360}^ \circ }} \right]$.
So, these will be the solutions of the given equation in the given interval.
Final solution: Hence, $x = \dfrac{\pi }{3},\dfrac{{2\pi }}{3},\dfrac{{4\pi }}{3},\dfrac{{5\pi }}{3}$ or $x = {60^ \circ },{120^ \circ },{240^ \circ },{300^ \circ }$ are solutions of the given equation in the interval $\left[ {0,{{360}^ \circ }} \right]$.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

