
Solve for $x$ $\dfrac{2-7x}{1-5x}=\dfrac{3+7x}{4+5x}$
A) $\dfrac{3}{2}$
B) $\dfrac{1}{2}$
C) $\dfrac{3}{4}$
D) $\dfrac{1}{4}$
Answer
497.1k+ views
Hint: To solve this type of linear equation we will take variable terms to one side and constants to the other side then we will apply different mathematical operations to get the required solution.
Complete answer:
Our given equation is
$\dfrac{2-7x}{1-5x}=\dfrac{3+7x}{4+5x}$
First we will use cross multiplication to simplify this
$\begin{align}
& \dfrac{2-7x}{1-5x}=\dfrac{3+7x}{4+5x} \\
& \Rightarrow \left( 2-7x \right)\left( 4+5x \right)=\left( 3+7x \right)\left( 1-5x \right) \\
\end{align}$
Now we will simplify both left hand side and right hand side
First we will simplify left hand side
$\begin{align}
& \left( 2-7x \right)\left( 4+5x \right) \\
& \Rightarrow 2\times 4-4\times 7x+2\times 5x-7x\times 5x \\
& \Rightarrow 8-28x+10x-35{{x}^{2}} \\
& \Rightarrow 8-18x-35{{x}^{2}} \\
\end{align}$
We can also write it as
$-35{{x}^{2}}-18x+8$
Now we will solve right hand side
$\begin{align}
& \left( 3+7x \right)\left( 1-5x \right) \\
& \Rightarrow 3\times 1-3\times 5x+7x\times 1-7x\times 5x \\
& \Rightarrow 3-15x+7x-35{{x}^{2}} \\
& \Rightarrow 3-8x-35{{x}^{2}} \\
\end{align}$
We can also write it as
$-35{{x}^{2}}-8x+3$
So now our equation becomes
$-35{{x}^{2}}-18x+8=-35{{x}^{2}}-8x+3$
This is a quadratic equation but if we simplify this we will get a linear equation.
Now we will try to shift all variable terms on left hand side and all constants to right hand side
$\begin{align}
& -35{{x}^{2}}-18x+8=-35{{x}^{2}}-8x+3 \\
& \Rightarrow -35{{x}^{2}}-18x+35{{x}^{2}}+8x=3-8 \\
\end{align}$
Now we will simplify this
$\begin{align}
& -35{{x}^{2}}-18x+35{{x}^{2}}+8x=3-8 \\
& \Rightarrow -18x+8x=-5 \\
& \Rightarrow -10x=-5 \\
\end{align}$
$\begin{align}
& \Rightarrow x=\dfrac{-5}{-10} \\
& \Rightarrow x=\dfrac{-1}{-2} \\
& \Rightarrow x=\dfrac{1}{2} \\
\end{align}$
$\therefore x=\dfrac{1}{2}$ is our required answer.
So, the correct answer is “Option B”.
Note:
There are three methods to solve linear equations in one variable.
1. Trial and Error.
2. Inverse operations.
3. Transposition Method.
Complete answer:
Our given equation is
$\dfrac{2-7x}{1-5x}=\dfrac{3+7x}{4+5x}$
First we will use cross multiplication to simplify this
$\begin{align}
& \dfrac{2-7x}{1-5x}=\dfrac{3+7x}{4+5x} \\
& \Rightarrow \left( 2-7x \right)\left( 4+5x \right)=\left( 3+7x \right)\left( 1-5x \right) \\
\end{align}$
Now we will simplify both left hand side and right hand side
First we will simplify left hand side
$\begin{align}
& \left( 2-7x \right)\left( 4+5x \right) \\
& \Rightarrow 2\times 4-4\times 7x+2\times 5x-7x\times 5x \\
& \Rightarrow 8-28x+10x-35{{x}^{2}} \\
& \Rightarrow 8-18x-35{{x}^{2}} \\
\end{align}$
We can also write it as
$-35{{x}^{2}}-18x+8$
Now we will solve right hand side
$\begin{align}
& \left( 3+7x \right)\left( 1-5x \right) \\
& \Rightarrow 3\times 1-3\times 5x+7x\times 1-7x\times 5x \\
& \Rightarrow 3-15x+7x-35{{x}^{2}} \\
& \Rightarrow 3-8x-35{{x}^{2}} \\
\end{align}$
We can also write it as
$-35{{x}^{2}}-8x+3$
So now our equation becomes
$-35{{x}^{2}}-18x+8=-35{{x}^{2}}-8x+3$
This is a quadratic equation but if we simplify this we will get a linear equation.
Now we will try to shift all variable terms on left hand side and all constants to right hand side
$\begin{align}
& -35{{x}^{2}}-18x+8=-35{{x}^{2}}-8x+3 \\
& \Rightarrow -35{{x}^{2}}-18x+35{{x}^{2}}+8x=3-8 \\
\end{align}$
Now we will simplify this
$\begin{align}
& -35{{x}^{2}}-18x+35{{x}^{2}}+8x=3-8 \\
& \Rightarrow -18x+8x=-5 \\
& \Rightarrow -10x=-5 \\
\end{align}$
$\begin{align}
& \Rightarrow x=\dfrac{-5}{-10} \\
& \Rightarrow x=\dfrac{-1}{-2} \\
& \Rightarrow x=\dfrac{1}{2} \\
\end{align}$
$\therefore x=\dfrac{1}{2}$ is our required answer.
So, the correct answer is “Option B”.
Note:
There are three methods to solve linear equations in one variable.
1. Trial and Error.
2. Inverse operations.
3. Transposition Method.
Recently Updated Pages
Master Class 8 Social Science: Engaging Questions & Answers for Success

Master Class 8 English: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 Maths: Engaging Questions & Answers for Success

Master Class 8 Science: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Full form of STD, ISD and PCO

Advantages and disadvantages of science

Right to vote is a AFundamental Right BFundamental class 8 social science CBSE

What are the 12 elements of nature class 8 chemistry CBSE


