Answer
Verified
424.8k+ views
Hint:First we transpose log (y) to the other side of the equation and then apply the quotient property of logarithm. Later we applied the power property of logarithm and then we solved the equation for the value of ‘w’ in a way we solved the general equations.
Formula used:
The quotient property of logarithm which states that\[{{\log }_{b}}m-{{\log }_{b}}n={{\log
}_{b}}\dfrac{m}{n}\].
The power property of logarithm, i.e. \[n\log a=\log {{\left( a \right)}^{n}}\].
The one-to-one property of logarithm, i.e. If\[\log a=\log b\], then a = b
Complete step by step solution:
We have given that,
\[\Rightarrow \log w=\dfrac{1}{2}\log x+\log y\]
Transposing log(y) on the other side of the equation, we get
\[\Rightarrow \log w-\log y=\dfrac{1}{2}\log x\]
Using the quotient property of logarithm, i.e.
\[{{\log }_{b}}m-{{\log }_{b}}n={{\log }_{b}}\dfrac{m}{n}\]
Applying the property, we get
\[\Rightarrow \log \dfrac{w}{y}=\dfrac{1}{2}\log x\]
Using the power property of logarithm, i.e.
\[n\log a=\log {{\left( a \right)}^{n}}\]
Applying the power property of log, we get
\[\Rightarrow \log \dfrac{w}{y}=\log {{\left( x \right)}^{\dfrac{1}{2}}}\]
Using the one-to-one property of logarithm, i.e.
If\[\log a=\log b\], then a = b
Applying this property, we get
\[\Rightarrow \dfrac{w}{y}={{\left( x \right)}^{\dfrac{1}{2}}}\]
Solving for the value of w, we get
\[\Rightarrow w={{\left( x \right)}^{\dfrac{1}{2}}}\times y=\sqrt{x}.y\]
Therefore the value of w is equal to \[\sqrt{x}y\]or\[\sqrt{x}.y\].
It is the required answer.
Note: In the given question, we need to find the value of ‘w’. To solve these types of questions, we used the basic formulas of logarithm. Students should always require to keep in mind all the formulae for solving the question easily. After applying log formulae to the equation, we need to solve the equation in the way we solve general linear equations.
Formula used:
The quotient property of logarithm which states that\[{{\log }_{b}}m-{{\log }_{b}}n={{\log
}_{b}}\dfrac{m}{n}\].
The power property of logarithm, i.e. \[n\log a=\log {{\left( a \right)}^{n}}\].
The one-to-one property of logarithm, i.e. If\[\log a=\log b\], then a = b
Complete step by step solution:
We have given that,
\[\Rightarrow \log w=\dfrac{1}{2}\log x+\log y\]
Transposing log(y) on the other side of the equation, we get
\[\Rightarrow \log w-\log y=\dfrac{1}{2}\log x\]
Using the quotient property of logarithm, i.e.
\[{{\log }_{b}}m-{{\log }_{b}}n={{\log }_{b}}\dfrac{m}{n}\]
Applying the property, we get
\[\Rightarrow \log \dfrac{w}{y}=\dfrac{1}{2}\log x\]
Using the power property of logarithm, i.e.
\[n\log a=\log {{\left( a \right)}^{n}}\]
Applying the power property of log, we get
\[\Rightarrow \log \dfrac{w}{y}=\log {{\left( x \right)}^{\dfrac{1}{2}}}\]
Using the one-to-one property of logarithm, i.e.
If\[\log a=\log b\], then a = b
Applying this property, we get
\[\Rightarrow \dfrac{w}{y}={{\left( x \right)}^{\dfrac{1}{2}}}\]
Solving for the value of w, we get
\[\Rightarrow w={{\left( x \right)}^{\dfrac{1}{2}}}\times y=\sqrt{x}.y\]
Therefore the value of w is equal to \[\sqrt{x}y\]or\[\sqrt{x}.y\].
It is the required answer.
Note: In the given question, we need to find the value of ‘w’. To solve these types of questions, we used the basic formulas of logarithm. Students should always require to keep in mind all the formulae for solving the question easily. After applying log formulae to the equation, we need to solve the equation in the way we solve general linear equations.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Collect pictures stories poems and information about class 10 social studies CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Why is there a time difference of about 5 hours between class 10 social science CBSE