
Solve for: \[\dfrac{\sin \left( A-B \right)}{\cos A\cos B}+\dfrac{\sin \left( B-C \right)}{\cos B\cos C}+\dfrac{\sin \left( C-A \right)}{\cos C\cos A}=0\]
Answer
610.2k+ views
Hint: For solving this problem we use some trigonometric formulas like sin(A-B) for expanding the left-hand side. By using this methodology, we easily solved our problem.
Complete step-by-step answer:
Some of the useful trigonometric formulas used in solving this problem.
sin (A + B) = sin A cos B + cos A sin B
sin (A − B) = sin A cos B − cos A sin B
According to the problem statement, we consider the left-hand side of the equation for proving equivalence of both sides. First, we expand the numerator of the left-hand side using the above-mentioned formulas.
$\Rightarrow \dfrac{\sin \left( A-B \right)}{\cos A\cos B}+\dfrac{\sin \left( B-C \right)}{\cos B\cos C}+\dfrac{\sin \left( C-A \right)}{\cos C\cos A}$
Expand the numerator of the above expression using, sin (x − y) = sin x cos y − cos x sin y formula, we get:
\[\Rightarrow \dfrac{\sin A\cos B-\cos A\sin B}{\cos A\cos B}+\dfrac{\sin B\cos C-\cos B\sin C}{\cos B\cos C}+\dfrac{\sin C\cos A-\cos C\sin A}{\cos C\cos A}\]
Now, separating the numerator and writing all terms individually, we get
\[\Rightarrow \dfrac{\sin A\cos B}{\cos A\cos B}-\dfrac{\cos A\sin B}{\cos A\cos B}+\dfrac{\sin B\cos C}{\cos B\cos C}-\dfrac{\cos B\sin C}{\cos B\cos C}+\dfrac{\sin C\cos A}{\cos C\cos A}-\dfrac{\cos C\sin A}{\cos C\cos A}\]
Now, similar terms in the numerator and denominator cancel out each other. On doing so, we get
\[\Rightarrow \dfrac{\sin A}{\cos A}-\dfrac{\sin B}{\cos B}+\dfrac{\sin B}{\cos B}-\dfrac{\sin C}{\cos C}+\dfrac{\sin C}{\cos C}-\dfrac{\sin A}{\cos A}\]
We know that $\dfrac{\sin \theta }{\cos \theta }=\tan \theta $. Using this identity, we get
$\begin{align}
& \Rightarrow \tan A-\tan B+\tan B-\tan C+\tan C-\tan A \\
& \Rightarrow 0 \\
\end{align}$
All the terms are the same and opposite. So, they cancel out each other. Finally, the result obtained is 0. Hence, we proved the equivalence of both sides by considering the expression of the left side.
Note: Students must remember the trigonometric formulas associated with different functions. The conversion of the respective function should be done carefully, and the magnitude of the required quantity must be copied correctly in the final expression for avoiding calculation error.
Complete step-by-step answer:
Some of the useful trigonometric formulas used in solving this problem.
sin (A + B) = sin A cos B + cos A sin B
sin (A − B) = sin A cos B − cos A sin B
According to the problem statement, we consider the left-hand side of the equation for proving equivalence of both sides. First, we expand the numerator of the left-hand side using the above-mentioned formulas.
$\Rightarrow \dfrac{\sin \left( A-B \right)}{\cos A\cos B}+\dfrac{\sin \left( B-C \right)}{\cos B\cos C}+\dfrac{\sin \left( C-A \right)}{\cos C\cos A}$
Expand the numerator of the above expression using, sin (x − y) = sin x cos y − cos x sin y formula, we get:
\[\Rightarrow \dfrac{\sin A\cos B-\cos A\sin B}{\cos A\cos B}+\dfrac{\sin B\cos C-\cos B\sin C}{\cos B\cos C}+\dfrac{\sin C\cos A-\cos C\sin A}{\cos C\cos A}\]
Now, separating the numerator and writing all terms individually, we get
\[\Rightarrow \dfrac{\sin A\cos B}{\cos A\cos B}-\dfrac{\cos A\sin B}{\cos A\cos B}+\dfrac{\sin B\cos C}{\cos B\cos C}-\dfrac{\cos B\sin C}{\cos B\cos C}+\dfrac{\sin C\cos A}{\cos C\cos A}-\dfrac{\cos C\sin A}{\cos C\cos A}\]
Now, similar terms in the numerator and denominator cancel out each other. On doing so, we get
\[\Rightarrow \dfrac{\sin A}{\cos A}-\dfrac{\sin B}{\cos B}+\dfrac{\sin B}{\cos B}-\dfrac{\sin C}{\cos C}+\dfrac{\sin C}{\cos C}-\dfrac{\sin A}{\cos A}\]
We know that $\dfrac{\sin \theta }{\cos \theta }=\tan \theta $. Using this identity, we get
$\begin{align}
& \Rightarrow \tan A-\tan B+\tan B-\tan C+\tan C-\tan A \\
& \Rightarrow 0 \\
\end{align}$
All the terms are the same and opposite. So, they cancel out each other. Finally, the result obtained is 0. Hence, we proved the equivalence of both sides by considering the expression of the left side.
Note: Students must remember the trigonometric formulas associated with different functions. The conversion of the respective function should be done carefully, and the magnitude of the required quantity must be copied correctly in the final expression for avoiding calculation error.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

