
Solve equations by cross multiplication method.
\[2x-y=6\]
\[x-y=2\]
Answer
606.9k+ views
Hint: Use the cross multiplication method to get the solution.
Apply \[\begin{align}
& x\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,y\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,1 \\
& {{b}_{1}}\searrow \,\,\,\,{{c}_{1}}\,\,\searrow \,\,\,\,{{a}_{1}}\,\,\,\searrow \,\,\,\,\,{{b}_{1}} \\
& {{b}_{2}}\nearrow \,\,\,\,{{c}_{2}}\,\,\nearrow \,\,\,\,{{a}_{2}}\,\,\,\nearrow \,\,\,\,{{b}_{2}} \\
\end{align}\] in stages and get the equations in order accordingly.
Complete step-by-step answer:
On applying we get the equations as follows :
\[\begin{align}
& 2x-y=6\,\,\,\,\,\,\,2x-y-6=0 \\
& x-y=2\,\,\,\,\,\,\,\,\,\,x-y-2=0 \\
\end{align}\]
The terms of the equations are :
\[\begin{align}
& {{a}_{1}}=2\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{{b}_{1}}=-1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{{c}_{1}}=-6 \\
& {{a}_{2}}=1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{{b}_{2}}=-1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{{c}_{2}}=-2 \\
\end{align}\]
Carry out the following operations to form the relations between the terms :
\[\begin{align}
& x\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,y\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,1 \\
& {{b}_{1}}\searrow \,\,\,\,{{c}_{1}}\,\,\searrow \,\,\,\,{{a}_{1}}\,\,\,\searrow \,\,\,\,\,{{b}_{1}} \\
& {{b}_{2}}\nearrow \,\,\,\,{{c}_{2}}\,\,\nearrow \,\,\,\,{{a}_{2}}\,\,\,\nearrow \,\,\,\,{{b}_{2}} \\
\end{align}\]
The relations between the terms are found out to be :
\[\dfrac{x}{{{b}_{1}}{{c}_{2}}-{{b}_{2}}{{c}_{1}}}=\dfrac{y}{{{c}_{1}}{{a}_{2}}-{{c}_{2}}{{a}_{1}}}=\dfrac{1}{{{a}_{1}}{{b}_{2}}-{{a}_{2}}{{b}_{1}}}\]
Substituting the relevant values we get :
\[\dfrac{x}{-1(-2)-(-1)(-6)}=\dfrac{y}{-6(1)-(-2)(2)}=\dfrac{1}{2(-1)-1(-1)}\]
On simplifying the above we get :
\[\dfrac{x}{+2+1(-6)}=\dfrac{y}{-6+2 \times 2}=\dfrac{1}{-2-1(-1)}\]
We get as follows :
\[\dfrac{x}{+2-6}=\dfrac{y}{-6+4}=\dfrac{1}{-2+1}\]
Thus we get :
\[\dfrac{x}{-4}=\dfrac{y}{-2}=\dfrac{1}{-1}\]
Upon restructuring the signs we get :
\[\dfrac{x}{-4}=\dfrac{y}{-2}=-1\]
Relating the x and y terms we get :
\[\begin{align}
& \dfrac{x}{-4}=\,-1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\dfrac{y}{-2}=-1 \\
& x=(-1) \times (-4)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,y=(-1) \times (-2) \\
& x=4\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,y=2 \\
\end{align}\]
Note: Take care to substitute relevant values. Make sure to cross multiply the right terms and perform the operations in the right sequence by taking care to avoid making mistakes with regard to signs.
Apply \[\begin{align}
& x\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,y\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,1 \\
& {{b}_{1}}\searrow \,\,\,\,{{c}_{1}}\,\,\searrow \,\,\,\,{{a}_{1}}\,\,\,\searrow \,\,\,\,\,{{b}_{1}} \\
& {{b}_{2}}\nearrow \,\,\,\,{{c}_{2}}\,\,\nearrow \,\,\,\,{{a}_{2}}\,\,\,\nearrow \,\,\,\,{{b}_{2}} \\
\end{align}\] in stages and get the equations in order accordingly.
Complete step-by-step answer:
On applying we get the equations as follows :
\[\begin{align}
& 2x-y=6\,\,\,\,\,\,\,2x-y-6=0 \\
& x-y=2\,\,\,\,\,\,\,\,\,\,x-y-2=0 \\
\end{align}\]
The terms of the equations are :
\[\begin{align}
& {{a}_{1}}=2\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{{b}_{1}}=-1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{{c}_{1}}=-6 \\
& {{a}_{2}}=1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{{b}_{2}}=-1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{{c}_{2}}=-2 \\
\end{align}\]
Carry out the following operations to form the relations between the terms :
\[\begin{align}
& x\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,y\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,1 \\
& {{b}_{1}}\searrow \,\,\,\,{{c}_{1}}\,\,\searrow \,\,\,\,{{a}_{1}}\,\,\,\searrow \,\,\,\,\,{{b}_{1}} \\
& {{b}_{2}}\nearrow \,\,\,\,{{c}_{2}}\,\,\nearrow \,\,\,\,{{a}_{2}}\,\,\,\nearrow \,\,\,\,{{b}_{2}} \\
\end{align}\]
The relations between the terms are found out to be :
\[\dfrac{x}{{{b}_{1}}{{c}_{2}}-{{b}_{2}}{{c}_{1}}}=\dfrac{y}{{{c}_{1}}{{a}_{2}}-{{c}_{2}}{{a}_{1}}}=\dfrac{1}{{{a}_{1}}{{b}_{2}}-{{a}_{2}}{{b}_{1}}}\]
Substituting the relevant values we get :
\[\dfrac{x}{-1(-2)-(-1)(-6)}=\dfrac{y}{-6(1)-(-2)(2)}=\dfrac{1}{2(-1)-1(-1)}\]
On simplifying the above we get :
\[\dfrac{x}{+2+1(-6)}=\dfrac{y}{-6+2 \times 2}=\dfrac{1}{-2-1(-1)}\]
We get as follows :
\[\dfrac{x}{+2-6}=\dfrac{y}{-6+4}=\dfrac{1}{-2+1}\]
Thus we get :
\[\dfrac{x}{-4}=\dfrac{y}{-2}=\dfrac{1}{-1}\]
Upon restructuring the signs we get :
\[\dfrac{x}{-4}=\dfrac{y}{-2}=-1\]
Relating the x and y terms we get :
\[\begin{align}
& \dfrac{x}{-4}=\,-1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\dfrac{y}{-2}=-1 \\
& x=(-1) \times (-4)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,y=(-1) \times (-2) \\
& x=4\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,y=2 \\
\end{align}\]
Note: Take care to substitute relevant values. Make sure to cross multiply the right terms and perform the operations in the right sequence by taking care to avoid making mistakes with regard to signs.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

10 examples of friction in our daily life

