
How do you solve $\dfrac{{{y^2} + 5y - 6}}{{{y^3} - 2{y^2}}} = \dfrac{5}{y} - \dfrac{6}{{{y^3} - 2{y^2}}}$ ?
Answer
534k+ views
Hint: To solve the given equation, to eliminate the complicated terms, we will multiply both sides by a factor that is able to eliminate the denominator. And then we will solve until we will solve for the variable $y$.
Complete step by step answer:
Given- $\dfrac{{{y^2} + 5y - 6}}{{{y^3} - 2{y^2}}} = \dfrac{5}{y} - \dfrac{6}{{{y^3} - 2{y^2}}}$
Restrict the domain to prevent division by 0.
$\dfrac{{{y^2} + 5y - 6}}{{{y^3} - 2{y^2}}} = \dfrac{5}{y} - \dfrac{6}{{{y^3} - 2{y^2}}}$ ; $y \ne 0,y \ne 2$
Multiply both sides by a factor that eliminates the denominators:
$\dfrac{{{y^2} + 5y - 6}}{{{y^3} - 2{y^2}}}({y^3} - 2{y^2}) = \dfrac{5}{y}({y^3} - 2{y^2}) - \dfrac{6}{{{y^3} - 2{y^2}}}({y^3} - 2{y^2})$$ \Rightarrow \dfrac{{{y^2} + 5y - 6}}{{{y^3} - 2{y^2}}}({y^3} - 2{y^2}) = \dfrac{5}{y}(y({y^3} - 2{y^2})) - \dfrac{6}{{{y^3} - 2{y^2}}}({y^3} - 2{y^2})$
Now cancel out the possible divisions in both numerator and denominator:
$\begin{align}
\Rightarrow {y^2} + 5y - 6 = 5({y^2} - 2y) - 6\,;\,\,y \ne 0,y \ne 2 \\
\Rightarrow {y^2} + 5y - 6 = 5{y^2} - 10y - 6\,;\,y \ne 0,y \ne 2 \\
\Rightarrow 5{y^2} - 10y - 6 - {y^2} - 5y + 6 = 0\,;\,y \ne 0,y \ne 2 \\
\Rightarrow 4{y^2} - 15y = 0\,;\,y \ne 0,y \ne 2 \\
\end{align} $
Solving the resulting quadratic equation:
$\therefore 4{y^2} - 15y = 0\,;\,y \ne 0,y \ne 2$
Now, we will take $y$ as common-
$y(4y - 15) = 0$
$\begin{align}
\because 4y - 15 = 0 \\
\Rightarrow y = \dfrac{{15}}{4} \\
\end{align} $
Note: During solving for $y$ ; as we can’t solve $y = 0$ ; so we discard the $y$ factor. A quadratic equation with real or complex coefficients has two solutions, called roots. These two solutions may or may not be distinct, and they may or may not be real. It may be possible to express a quadratic equation \[a{x^2} + bx + c = 0\] as a product \[\left( {px{\text{ }} + {\text{ }}q} \right)\left( {rx{\text{ }} + {\text{ }}s} \right) = 0\] .
Complete step by step answer:
Given- $\dfrac{{{y^2} + 5y - 6}}{{{y^3} - 2{y^2}}} = \dfrac{5}{y} - \dfrac{6}{{{y^3} - 2{y^2}}}$
Restrict the domain to prevent division by 0.
$\dfrac{{{y^2} + 5y - 6}}{{{y^3} - 2{y^2}}} = \dfrac{5}{y} - \dfrac{6}{{{y^3} - 2{y^2}}}$ ; $y \ne 0,y \ne 2$
Multiply both sides by a factor that eliminates the denominators:
$\dfrac{{{y^2} + 5y - 6}}{{{y^3} - 2{y^2}}}({y^3} - 2{y^2}) = \dfrac{5}{y}({y^3} - 2{y^2}) - \dfrac{6}{{{y^3} - 2{y^2}}}({y^3} - 2{y^2})$$ \Rightarrow \dfrac{{{y^2} + 5y - 6}}{{{y^3} - 2{y^2}}}({y^3} - 2{y^2}) = \dfrac{5}{y}(y({y^3} - 2{y^2})) - \dfrac{6}{{{y^3} - 2{y^2}}}({y^3} - 2{y^2})$
Now cancel out the possible divisions in both numerator and denominator:
$\begin{align}
\Rightarrow {y^2} + 5y - 6 = 5({y^2} - 2y) - 6\,;\,\,y \ne 0,y \ne 2 \\
\Rightarrow {y^2} + 5y - 6 = 5{y^2} - 10y - 6\,;\,y \ne 0,y \ne 2 \\
\Rightarrow 5{y^2} - 10y - 6 - {y^2} - 5y + 6 = 0\,;\,y \ne 0,y \ne 2 \\
\Rightarrow 4{y^2} - 15y = 0\,;\,y \ne 0,y \ne 2 \\
\end{align} $
Solving the resulting quadratic equation:
$\therefore 4{y^2} - 15y = 0\,;\,y \ne 0,y \ne 2$
Now, we will take $y$ as common-
$y(4y - 15) = 0$
$\begin{align}
\because 4y - 15 = 0 \\
\Rightarrow y = \dfrac{{15}}{4} \\
\end{align} $
Note: During solving for $y$ ; as we can’t solve $y = 0$ ; so we discard the $y$ factor. A quadratic equation with real or complex coefficients has two solutions, called roots. These two solutions may or may not be distinct, and they may or may not be real. It may be possible to express a quadratic equation \[a{x^2} + bx + c = 0\] as a product \[\left( {px{\text{ }} + {\text{ }}q} \right)\left( {rx{\text{ }} + {\text{ }}s} \right) = 0\] .
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

