
Solve: $ \dfrac{x}{3}+\dfrac{y}{4}=11 $ , $ \dfrac{5x}{6}-\dfrac{y}{3}=-7 $ .
Answer
511.5k+ views
Hint: There are two unknowns $ x $ and $ y $ to solve. We simplify the equations and solve the equations equating the coefficients of one variable and omitting the variable. The other variable remains with the constants. Using the binary operation, we find the value of the other variable. First, we are applying the process of reduction and then the substitution.
Complete step-by-step answer:
The given equations $ \dfrac{x}{3}+\dfrac{y}{4}=11 $ and $ \dfrac{5x}{6}-\dfrac{y}{3}=-7 $ .
We simplify them to get $ 4x+3y=132 $ and $ 5x-2y=-42 $ which are linear equations of two variables.
We know that the number of equations has to be equal to the number of unknowns to solve them.
We take the equations as $ 4x+3y=132.....(i) $ and $ 5x-2y=-42......(ii) $ .
We multiply 2 to the both sides of the first equation and get
$ \begin{align}
& 2\times \left( 4x+3y \right)=132\times 2 \\
& \Rightarrow 8x+6y=264 \\
\end{align} $
We take the equation as $ 8x+6y=264.....(iii) $ .
We multiply 3 to the both sides of the first equation and get
$ \begin{align}
& 3\times \left( 5x-2y \right)=3\times \left( -42 \right) \\
& \Rightarrow 15x-6y=-126 \\
\end{align} $
We take the equation as $ 15x-6y=-126.....(iv) $ .
Now we add the equation (iii) to equation (iv) and get
$ \left( 8x+6y \right)+\left( 15x-6y \right)=264-126 $ .
We take the variables together and the constants on the other side.
Simplifying the equation, we get
$ \begin{align}
& \left( 8x+6y \right)+\left( 15x-6y \right)=264-126 \\
& \Rightarrow 23x=138 \\
& \Rightarrow x=\dfrac{138}{23}=6 \\
\end{align} $
The value of $ x $ is 6. Now putting the value in the equation $ 4x+3y=132.....(i) $ , we get
$ \begin{align}
& 4x+3y=132 \\
& \Rightarrow y=\dfrac{132-4\times 6}{3}=36 \\
\end{align} $ .
Therefore, the values are $ x=6,y=36 $ .
So, the correct answer is “ $ x=6,y=36 $ ”.
Note: We can also find the value of one variable $ y $ with respect to $ x $ based on the equation
$ 4x+3y=132 $ where $ y=\dfrac{132-4x}{3} $ . We replace the value of $ y $ in the second equation of
$ 5x-2y=-42 $ and get
\[\begin{align}
& 5x-2y=-42 \\
& \Rightarrow 5x-2\left( \dfrac{132-4x}{3} \right)=-42 \\
& \Rightarrow 15x-264+8x=-126 \\
\end{align}\]
We get the equation of $ x $ and solve
\[\begin{align}
& 15x-264+8x=-126 \\
& \Rightarrow 23x=264-126=138 \\
& \Rightarrow x=\dfrac{138}{23}=6 \\
\end{align}\]
Putting the value of $ x $ we get $ 4x+3y=132\Rightarrow y=\dfrac{132-4\times 6}{3}=36 $ .
Therefore, the values are $ x=6,y=36 $ .
Complete step-by-step answer:
The given equations $ \dfrac{x}{3}+\dfrac{y}{4}=11 $ and $ \dfrac{5x}{6}-\dfrac{y}{3}=-7 $ .
We simplify them to get $ 4x+3y=132 $ and $ 5x-2y=-42 $ which are linear equations of two variables.
We know that the number of equations has to be equal to the number of unknowns to solve them.
We take the equations as $ 4x+3y=132.....(i) $ and $ 5x-2y=-42......(ii) $ .
We multiply 2 to the both sides of the first equation and get
$ \begin{align}
& 2\times \left( 4x+3y \right)=132\times 2 \\
& \Rightarrow 8x+6y=264 \\
\end{align} $
We take the equation as $ 8x+6y=264.....(iii) $ .
We multiply 3 to the both sides of the first equation and get
$ \begin{align}
& 3\times \left( 5x-2y \right)=3\times \left( -42 \right) \\
& \Rightarrow 15x-6y=-126 \\
\end{align} $
We take the equation as $ 15x-6y=-126.....(iv) $ .
Now we add the equation (iii) to equation (iv) and get
$ \left( 8x+6y \right)+\left( 15x-6y \right)=264-126 $ .
We take the variables together and the constants on the other side.
Simplifying the equation, we get
$ \begin{align}
& \left( 8x+6y \right)+\left( 15x-6y \right)=264-126 \\
& \Rightarrow 23x=138 \\
& \Rightarrow x=\dfrac{138}{23}=6 \\
\end{align} $
The value of $ x $ is 6. Now putting the value in the equation $ 4x+3y=132.....(i) $ , we get
$ \begin{align}
& 4x+3y=132 \\
& \Rightarrow y=\dfrac{132-4\times 6}{3}=36 \\
\end{align} $ .
Therefore, the values are $ x=6,y=36 $ .
So, the correct answer is “ $ x=6,y=36 $ ”.
Note: We can also find the value of one variable $ y $ with respect to $ x $ based on the equation
$ 4x+3y=132 $ where $ y=\dfrac{132-4x}{3} $ . We replace the value of $ y $ in the second equation of
$ 5x-2y=-42 $ and get
\[\begin{align}
& 5x-2y=-42 \\
& \Rightarrow 5x-2\left( \dfrac{132-4x}{3} \right)=-42 \\
& \Rightarrow 15x-264+8x=-126 \\
\end{align}\]
We get the equation of $ x $ and solve
\[\begin{align}
& 15x-264+8x=-126 \\
& \Rightarrow 23x=264-126=138 \\
& \Rightarrow x=\dfrac{138}{23}=6 \\
\end{align}\]
Putting the value of $ x $ we get $ 4x+3y=132\Rightarrow y=\dfrac{132-4\times 6}{3}=36 $ .
Therefore, the values are $ x=6,y=36 $ .
Recently Updated Pages
Questions & Answers - Ask your doubts

A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Two Planoconcave lenses 1 and 2 of glass of refractive class 12 physics CBSE

The compound 2 methyl 2 butene on reaction with NaIO4 class 12 chemistry CBSE

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Name the states through which the Tropic of Cancer class 8 social science CBSE

Full form of STD, ISD and PCO

Right to vote is a AFundamental Right BFundamental class 8 social science CBSE

Summary of the poem Where the Mind is Without Fear class 8 english CBSE


