
Solve: $ \dfrac{x}{3}+\dfrac{y}{4}=11 $ , $ \dfrac{5x}{6}-\dfrac{y}{3}=-7 $ .
Answer
523.2k+ views
Hint: There are two unknowns $ x $ and $ y $ to solve. We simplify the equations and solve the equations equating the coefficients of one variable and omitting the variable. The other variable remains with the constants. Using the binary operation, we find the value of the other variable. First, we are applying the process of reduction and then the substitution.
Complete step-by-step answer:
The given equations $ \dfrac{x}{3}+\dfrac{y}{4}=11 $ and $ \dfrac{5x}{6}-\dfrac{y}{3}=-7 $ .
We simplify them to get $ 4x+3y=132 $ and $ 5x-2y=-42 $ which are linear equations of two variables.
We know that the number of equations has to be equal to the number of unknowns to solve them.
We take the equations as $ 4x+3y=132.....(i) $ and $ 5x-2y=-42......(ii) $ .
We multiply 2 to the both sides of the first equation and get
$ \begin{align}
& 2\times \left( 4x+3y \right)=132\times 2 \\
& \Rightarrow 8x+6y=264 \\
\end{align} $
We take the equation as $ 8x+6y=264.....(iii) $ .
We multiply 3 to the both sides of the first equation and get
$ \begin{align}
& 3\times \left( 5x-2y \right)=3\times \left( -42 \right) \\
& \Rightarrow 15x-6y=-126 \\
\end{align} $
We take the equation as $ 15x-6y=-126.....(iv) $ .
Now we add the equation (iii) to equation (iv) and get
$ \left( 8x+6y \right)+\left( 15x-6y \right)=264-126 $ .
We take the variables together and the constants on the other side.
Simplifying the equation, we get
$ \begin{align}
& \left( 8x+6y \right)+\left( 15x-6y \right)=264-126 \\
& \Rightarrow 23x=138 \\
& \Rightarrow x=\dfrac{138}{23}=6 \\
\end{align} $
The value of $ x $ is 6. Now putting the value in the equation $ 4x+3y=132.....(i) $ , we get
$ \begin{align}
& 4x+3y=132 \\
& \Rightarrow y=\dfrac{132-4\times 6}{3}=36 \\
\end{align} $ .
Therefore, the values are $ x=6,y=36 $ .
So, the correct answer is “ $ x=6,y=36 $ ”.
Note: We can also find the value of one variable $ y $ with respect to $ x $ based on the equation
$ 4x+3y=132 $ where $ y=\dfrac{132-4x}{3} $ . We replace the value of $ y $ in the second equation of
$ 5x-2y=-42 $ and get
\[\begin{align}
& 5x-2y=-42 \\
& \Rightarrow 5x-2\left( \dfrac{132-4x}{3} \right)=-42 \\
& \Rightarrow 15x-264+8x=-126 \\
\end{align}\]
We get the equation of $ x $ and solve
\[\begin{align}
& 15x-264+8x=-126 \\
& \Rightarrow 23x=264-126=138 \\
& \Rightarrow x=\dfrac{138}{23}=6 \\
\end{align}\]
Putting the value of $ x $ we get $ 4x+3y=132\Rightarrow y=\dfrac{132-4\times 6}{3}=36 $ .
Therefore, the values are $ x=6,y=36 $ .
Complete step-by-step answer:
The given equations $ \dfrac{x}{3}+\dfrac{y}{4}=11 $ and $ \dfrac{5x}{6}-\dfrac{y}{3}=-7 $ .
We simplify them to get $ 4x+3y=132 $ and $ 5x-2y=-42 $ which are linear equations of two variables.
We know that the number of equations has to be equal to the number of unknowns to solve them.
We take the equations as $ 4x+3y=132.....(i) $ and $ 5x-2y=-42......(ii) $ .
We multiply 2 to the both sides of the first equation and get
$ \begin{align}
& 2\times \left( 4x+3y \right)=132\times 2 \\
& \Rightarrow 8x+6y=264 \\
\end{align} $
We take the equation as $ 8x+6y=264.....(iii) $ .
We multiply 3 to the both sides of the first equation and get
$ \begin{align}
& 3\times \left( 5x-2y \right)=3\times \left( -42 \right) \\
& \Rightarrow 15x-6y=-126 \\
\end{align} $
We take the equation as $ 15x-6y=-126.....(iv) $ .
Now we add the equation (iii) to equation (iv) and get
$ \left( 8x+6y \right)+\left( 15x-6y \right)=264-126 $ .
We take the variables together and the constants on the other side.
Simplifying the equation, we get
$ \begin{align}
& \left( 8x+6y \right)+\left( 15x-6y \right)=264-126 \\
& \Rightarrow 23x=138 \\
& \Rightarrow x=\dfrac{138}{23}=6 \\
\end{align} $
The value of $ x $ is 6. Now putting the value in the equation $ 4x+3y=132.....(i) $ , we get
$ \begin{align}
& 4x+3y=132 \\
& \Rightarrow y=\dfrac{132-4\times 6}{3}=36 \\
\end{align} $ .
Therefore, the values are $ x=6,y=36 $ .
So, the correct answer is “ $ x=6,y=36 $ ”.
Note: We can also find the value of one variable $ y $ with respect to $ x $ based on the equation
$ 4x+3y=132 $ where $ y=\dfrac{132-4x}{3} $ . We replace the value of $ y $ in the second equation of
$ 5x-2y=-42 $ and get
\[\begin{align}
& 5x-2y=-42 \\
& \Rightarrow 5x-2\left( \dfrac{132-4x}{3} \right)=-42 \\
& \Rightarrow 15x-264+8x=-126 \\
\end{align}\]
We get the equation of $ x $ and solve
\[\begin{align}
& 15x-264+8x=-126 \\
& \Rightarrow 23x=264-126=138 \\
& \Rightarrow x=\dfrac{138}{23}=6 \\
\end{align}\]
Putting the value of $ x $ we get $ 4x+3y=132\Rightarrow y=\dfrac{132-4\times 6}{3}=36 $ .
Therefore, the values are $ x=6,y=36 $ .
Recently Updated Pages
Master Class 8 Social Science: Engaging Questions & Answers for Success

Master Class 8 English: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 Maths: Engaging Questions & Answers for Success

Master Class 8 Science: Engaging Questions & Answers for Success

Master Class 7 English: Engaging Questions & Answers for Success

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Full form of STD, ISD and PCO

Advantages and disadvantages of science

Right to vote is a AFundamental Right BFundamental class 8 social science CBSE

What are the 12 elements of nature class 8 chemistry CBSE


