
How do you solve $\dfrac{x}{2}+\dfrac{y}{3}=6$ and $\dfrac{x}{3}+\dfrac{y}{2}=12$?
Answer
493.5k+ views
Hint: Multiply $\dfrac{1}{3}$ with the first equation and $\dfrac{1}{2}$ with the second equation to make the coefficient of ‘x’ equal. Then subtract both the equations to get the value of ‘y’. Put that value of ‘y’ in any of the equations to get the value of ‘x’.
Complete step-by-step answer:
The equations we have
$\dfrac{x}{2}+\dfrac{y}{3}=6$……….(1)
$\dfrac{x}{3}+\dfrac{y}{2}=12$……….(2)
Multiplying equation (1) by $\dfrac{1}{3}$, we get
$eq(1)\times \dfrac{1}{3}\Rightarrow \dfrac{1}{3}\left( \dfrac{x}{2}+\dfrac{y}{3} \right)=\dfrac{1}{3}\times 6$
$\Rightarrow \dfrac{x}{6}+\dfrac{y}{9}=2$……….(3)
Multiplying equation (2) by $\dfrac{1}{2}$, we get
$eq(2)\times \dfrac{1}{2}\Rightarrow \dfrac{1}{2}\left( \dfrac{x}{3}+\dfrac{y}{2} \right)=\dfrac{1}{2}\times 12$
$\Rightarrow \dfrac{x}{6}+\dfrac{y}{4}=6$……….(4)
Subtracting equation (4) from equation (3), we get
$\begin{align}
& \Rightarrow \left( \dfrac{x}{6}+\dfrac{y}{9} \right)-\left( \dfrac{x}{6}+\dfrac{y}{4} \right)=2-6 \\
& \Rightarrow \dfrac{x}{6}+\dfrac{y}{9}-\dfrac{x}{6}-\dfrac{y}{4}=-4 \\
& \Rightarrow \dfrac{y}{9}-\dfrac{y}{4}=-4 \\
& \Rightarrow \dfrac{4y-9y}{36}=-4 \\
& \Rightarrow -5y=-144 \\
& \Rightarrow y=\dfrac{-144}{-5} \\
& \Rightarrow y=\dfrac{144}{5} \\
\end{align}$
Putting the value of ‘y’ in equation (1), we get
$\begin{align}
& \dfrac{x}{2}+\dfrac{\dfrac{144}{5}}{3}=6 \\
& \Rightarrow \dfrac{x}{2}+\dfrac{48}{5}=6 \\
& \Rightarrow \dfrac{x}{2}=6-\dfrac{48}{5} \\
& \Rightarrow \dfrac{x}{2}=\dfrac{30-48}{5} \\
& \Rightarrow \dfrac{x}{2}=\dfrac{-18}{5} \\
& \Rightarrow x=\dfrac{-36}{5} \\
\end{align}$
So, the solution of the equations $\dfrac{x}{2}+\dfrac{y}{3}=6$ and $\dfrac{x}{3}+\dfrac{y}{2}=12$ is $x=\dfrac{-36}{5}$ and $y=\dfrac{144}{5}$.
Note: The equations can also be brought to linear form. Multiplying both the equations by ‘6’ we obtain the equations as $3x+2y=36$ and $2x+3y=72$. Now, the equations can be solved by equating the coefficients of ‘x’ or ‘y’ and then putting the value of one of them in any of the equations to obtain the other one.
Complete step-by-step answer:
The equations we have
$\dfrac{x}{2}+\dfrac{y}{3}=6$……….(1)
$\dfrac{x}{3}+\dfrac{y}{2}=12$……….(2)
Multiplying equation (1) by $\dfrac{1}{3}$, we get
$eq(1)\times \dfrac{1}{3}\Rightarrow \dfrac{1}{3}\left( \dfrac{x}{2}+\dfrac{y}{3} \right)=\dfrac{1}{3}\times 6$
$\Rightarrow \dfrac{x}{6}+\dfrac{y}{9}=2$……….(3)
Multiplying equation (2) by $\dfrac{1}{2}$, we get
$eq(2)\times \dfrac{1}{2}\Rightarrow \dfrac{1}{2}\left( \dfrac{x}{3}+\dfrac{y}{2} \right)=\dfrac{1}{2}\times 12$
$\Rightarrow \dfrac{x}{6}+\dfrac{y}{4}=6$……….(4)
Subtracting equation (4) from equation (3), we get
$\begin{align}
& \Rightarrow \left( \dfrac{x}{6}+\dfrac{y}{9} \right)-\left( \dfrac{x}{6}+\dfrac{y}{4} \right)=2-6 \\
& \Rightarrow \dfrac{x}{6}+\dfrac{y}{9}-\dfrac{x}{6}-\dfrac{y}{4}=-4 \\
& \Rightarrow \dfrac{y}{9}-\dfrac{y}{4}=-4 \\
& \Rightarrow \dfrac{4y-9y}{36}=-4 \\
& \Rightarrow -5y=-144 \\
& \Rightarrow y=\dfrac{-144}{-5} \\
& \Rightarrow y=\dfrac{144}{5} \\
\end{align}$
Putting the value of ‘y’ in equation (1), we get
$\begin{align}
& \dfrac{x}{2}+\dfrac{\dfrac{144}{5}}{3}=6 \\
& \Rightarrow \dfrac{x}{2}+\dfrac{48}{5}=6 \\
& \Rightarrow \dfrac{x}{2}=6-\dfrac{48}{5} \\
& \Rightarrow \dfrac{x}{2}=\dfrac{30-48}{5} \\
& \Rightarrow \dfrac{x}{2}=\dfrac{-18}{5} \\
& \Rightarrow x=\dfrac{-36}{5} \\
\end{align}$
So, the solution of the equations $\dfrac{x}{2}+\dfrac{y}{3}=6$ and $\dfrac{x}{3}+\dfrac{y}{2}=12$ is $x=\dfrac{-36}{5}$ and $y=\dfrac{144}{5}$.
Note: The equations can also be brought to linear form. Multiplying both the equations by ‘6’ we obtain the equations as $3x+2y=36$ and $2x+3y=72$. Now, the equations can be solved by equating the coefficients of ‘x’ or ‘y’ and then putting the value of one of them in any of the equations to obtain the other one.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Trending doubts
Difference Between Plant Cell and Animal Cell

Name 10 Living and Non living things class 9 biology CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

In which of the following the direction of ocean currents class 9 social science CBSE

On an outline map of India show its neighbouring c class 9 social science CBSE

The highest mountain peak in India is A Kanchenjunga class 9 social science CBSE
