
How do you solve $\dfrac{x}{2}+\dfrac{y}{3}=6$ and $\dfrac{x}{3}+\dfrac{y}{2}=12$?
Answer
555k+ views
Hint: Multiply $\dfrac{1}{3}$ with the first equation and $\dfrac{1}{2}$ with the second equation to make the coefficient of ‘x’ equal. Then subtract both the equations to get the value of ‘y’. Put that value of ‘y’ in any of the equations to get the value of ‘x’.
Complete step-by-step answer:
The equations we have
$\dfrac{x}{2}+\dfrac{y}{3}=6$……….(1)
$\dfrac{x}{3}+\dfrac{y}{2}=12$……….(2)
Multiplying equation (1) by $\dfrac{1}{3}$, we get
$eq(1)\times \dfrac{1}{3}\Rightarrow \dfrac{1}{3}\left( \dfrac{x}{2}+\dfrac{y}{3} \right)=\dfrac{1}{3}\times 6$
$\Rightarrow \dfrac{x}{6}+\dfrac{y}{9}=2$……….(3)
Multiplying equation (2) by $\dfrac{1}{2}$, we get
$eq(2)\times \dfrac{1}{2}\Rightarrow \dfrac{1}{2}\left( \dfrac{x}{3}+\dfrac{y}{2} \right)=\dfrac{1}{2}\times 12$
$\Rightarrow \dfrac{x}{6}+\dfrac{y}{4}=6$……….(4)
Subtracting equation (4) from equation (3), we get
$\begin{align}
& \Rightarrow \left( \dfrac{x}{6}+\dfrac{y}{9} \right)-\left( \dfrac{x}{6}+\dfrac{y}{4} \right)=2-6 \\
& \Rightarrow \dfrac{x}{6}+\dfrac{y}{9}-\dfrac{x}{6}-\dfrac{y}{4}=-4 \\
& \Rightarrow \dfrac{y}{9}-\dfrac{y}{4}=-4 \\
& \Rightarrow \dfrac{4y-9y}{36}=-4 \\
& \Rightarrow -5y=-144 \\
& \Rightarrow y=\dfrac{-144}{-5} \\
& \Rightarrow y=\dfrac{144}{5} \\
\end{align}$
Putting the value of ‘y’ in equation (1), we get
$\begin{align}
& \dfrac{x}{2}+\dfrac{\dfrac{144}{5}}{3}=6 \\
& \Rightarrow \dfrac{x}{2}+\dfrac{48}{5}=6 \\
& \Rightarrow \dfrac{x}{2}=6-\dfrac{48}{5} \\
& \Rightarrow \dfrac{x}{2}=\dfrac{30-48}{5} \\
& \Rightarrow \dfrac{x}{2}=\dfrac{-18}{5} \\
& \Rightarrow x=\dfrac{-36}{5} \\
\end{align}$
So, the solution of the equations $\dfrac{x}{2}+\dfrac{y}{3}=6$ and $\dfrac{x}{3}+\dfrac{y}{2}=12$ is $x=\dfrac{-36}{5}$ and $y=\dfrac{144}{5}$.
Note: The equations can also be brought to linear form. Multiplying both the equations by ‘6’ we obtain the equations as $3x+2y=36$ and $2x+3y=72$. Now, the equations can be solved by equating the coefficients of ‘x’ or ‘y’ and then putting the value of one of them in any of the equations to obtain the other one.
Complete step-by-step answer:
The equations we have
$\dfrac{x}{2}+\dfrac{y}{3}=6$……….(1)
$\dfrac{x}{3}+\dfrac{y}{2}=12$……….(2)
Multiplying equation (1) by $\dfrac{1}{3}$, we get
$eq(1)\times \dfrac{1}{3}\Rightarrow \dfrac{1}{3}\left( \dfrac{x}{2}+\dfrac{y}{3} \right)=\dfrac{1}{3}\times 6$
$\Rightarrow \dfrac{x}{6}+\dfrac{y}{9}=2$……….(3)
Multiplying equation (2) by $\dfrac{1}{2}$, we get
$eq(2)\times \dfrac{1}{2}\Rightarrow \dfrac{1}{2}\left( \dfrac{x}{3}+\dfrac{y}{2} \right)=\dfrac{1}{2}\times 12$
$\Rightarrow \dfrac{x}{6}+\dfrac{y}{4}=6$……….(4)
Subtracting equation (4) from equation (3), we get
$\begin{align}
& \Rightarrow \left( \dfrac{x}{6}+\dfrac{y}{9} \right)-\left( \dfrac{x}{6}+\dfrac{y}{4} \right)=2-6 \\
& \Rightarrow \dfrac{x}{6}+\dfrac{y}{9}-\dfrac{x}{6}-\dfrac{y}{4}=-4 \\
& \Rightarrow \dfrac{y}{9}-\dfrac{y}{4}=-4 \\
& \Rightarrow \dfrac{4y-9y}{36}=-4 \\
& \Rightarrow -5y=-144 \\
& \Rightarrow y=\dfrac{-144}{-5} \\
& \Rightarrow y=\dfrac{144}{5} \\
\end{align}$
Putting the value of ‘y’ in equation (1), we get
$\begin{align}
& \dfrac{x}{2}+\dfrac{\dfrac{144}{5}}{3}=6 \\
& \Rightarrow \dfrac{x}{2}+\dfrac{48}{5}=6 \\
& \Rightarrow \dfrac{x}{2}=6-\dfrac{48}{5} \\
& \Rightarrow \dfrac{x}{2}=\dfrac{30-48}{5} \\
& \Rightarrow \dfrac{x}{2}=\dfrac{-18}{5} \\
& \Rightarrow x=\dfrac{-36}{5} \\
\end{align}$
So, the solution of the equations $\dfrac{x}{2}+\dfrac{y}{3}=6$ and $\dfrac{x}{3}+\dfrac{y}{2}=12$ is $x=\dfrac{-36}{5}$ and $y=\dfrac{144}{5}$.
Note: The equations can also be brought to linear form. Multiplying both the equations by ‘6’ we obtain the equations as $3x+2y=36$ and $2x+3y=72$. Now, the equations can be solved by equating the coefficients of ‘x’ or ‘y’ and then putting the value of one of them in any of the equations to obtain the other one.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Which places in India experience sunrise first and class 9 social science CBSE

What is pollution? How many types of pollution? Define it

Name 10 Living and Non living things class 9 biology CBSE

What is the full form of pH?


