
How do you solve $\dfrac{x}{2}+\dfrac{y}{3}=6$ and $\dfrac{x}{3}+\dfrac{y}{2}=12$?
Answer
542.7k+ views
Hint: Multiply $\dfrac{1}{3}$ with the first equation and $\dfrac{1}{2}$ with the second equation to make the coefficient of ‘x’ equal. Then subtract both the equations to get the value of ‘y’. Put that value of ‘y’ in any of the equations to get the value of ‘x’.
Complete step-by-step answer:
The equations we have
$\dfrac{x}{2}+\dfrac{y}{3}=6$……….(1)
$\dfrac{x}{3}+\dfrac{y}{2}=12$……….(2)
Multiplying equation (1) by $\dfrac{1}{3}$, we get
$eq(1)\times \dfrac{1}{3}\Rightarrow \dfrac{1}{3}\left( \dfrac{x}{2}+\dfrac{y}{3} \right)=\dfrac{1}{3}\times 6$
$\Rightarrow \dfrac{x}{6}+\dfrac{y}{9}=2$……….(3)
Multiplying equation (2) by $\dfrac{1}{2}$, we get
$eq(2)\times \dfrac{1}{2}\Rightarrow \dfrac{1}{2}\left( \dfrac{x}{3}+\dfrac{y}{2} \right)=\dfrac{1}{2}\times 12$
$\Rightarrow \dfrac{x}{6}+\dfrac{y}{4}=6$……….(4)
Subtracting equation (4) from equation (3), we get
$\begin{align}
& \Rightarrow \left( \dfrac{x}{6}+\dfrac{y}{9} \right)-\left( \dfrac{x}{6}+\dfrac{y}{4} \right)=2-6 \\
& \Rightarrow \dfrac{x}{6}+\dfrac{y}{9}-\dfrac{x}{6}-\dfrac{y}{4}=-4 \\
& \Rightarrow \dfrac{y}{9}-\dfrac{y}{4}=-4 \\
& \Rightarrow \dfrac{4y-9y}{36}=-4 \\
& \Rightarrow -5y=-144 \\
& \Rightarrow y=\dfrac{-144}{-5} \\
& \Rightarrow y=\dfrac{144}{5} \\
\end{align}$
Putting the value of ‘y’ in equation (1), we get
$\begin{align}
& \dfrac{x}{2}+\dfrac{\dfrac{144}{5}}{3}=6 \\
& \Rightarrow \dfrac{x}{2}+\dfrac{48}{5}=6 \\
& \Rightarrow \dfrac{x}{2}=6-\dfrac{48}{5} \\
& \Rightarrow \dfrac{x}{2}=\dfrac{30-48}{5} \\
& \Rightarrow \dfrac{x}{2}=\dfrac{-18}{5} \\
& \Rightarrow x=\dfrac{-36}{5} \\
\end{align}$
So, the solution of the equations $\dfrac{x}{2}+\dfrac{y}{3}=6$ and $\dfrac{x}{3}+\dfrac{y}{2}=12$ is $x=\dfrac{-36}{5}$ and $y=\dfrac{144}{5}$.
Note: The equations can also be brought to linear form. Multiplying both the equations by ‘6’ we obtain the equations as $3x+2y=36$ and $2x+3y=72$. Now, the equations can be solved by equating the coefficients of ‘x’ or ‘y’ and then putting the value of one of them in any of the equations to obtain the other one.
Complete step-by-step answer:
The equations we have
$\dfrac{x}{2}+\dfrac{y}{3}=6$……….(1)
$\dfrac{x}{3}+\dfrac{y}{2}=12$……….(2)
Multiplying equation (1) by $\dfrac{1}{3}$, we get
$eq(1)\times \dfrac{1}{3}\Rightarrow \dfrac{1}{3}\left( \dfrac{x}{2}+\dfrac{y}{3} \right)=\dfrac{1}{3}\times 6$
$\Rightarrow \dfrac{x}{6}+\dfrac{y}{9}=2$……….(3)
Multiplying equation (2) by $\dfrac{1}{2}$, we get
$eq(2)\times \dfrac{1}{2}\Rightarrow \dfrac{1}{2}\left( \dfrac{x}{3}+\dfrac{y}{2} \right)=\dfrac{1}{2}\times 12$
$\Rightarrow \dfrac{x}{6}+\dfrac{y}{4}=6$……….(4)
Subtracting equation (4) from equation (3), we get
$\begin{align}
& \Rightarrow \left( \dfrac{x}{6}+\dfrac{y}{9} \right)-\left( \dfrac{x}{6}+\dfrac{y}{4} \right)=2-6 \\
& \Rightarrow \dfrac{x}{6}+\dfrac{y}{9}-\dfrac{x}{6}-\dfrac{y}{4}=-4 \\
& \Rightarrow \dfrac{y}{9}-\dfrac{y}{4}=-4 \\
& \Rightarrow \dfrac{4y-9y}{36}=-4 \\
& \Rightarrow -5y=-144 \\
& \Rightarrow y=\dfrac{-144}{-5} \\
& \Rightarrow y=\dfrac{144}{5} \\
\end{align}$
Putting the value of ‘y’ in equation (1), we get
$\begin{align}
& \dfrac{x}{2}+\dfrac{\dfrac{144}{5}}{3}=6 \\
& \Rightarrow \dfrac{x}{2}+\dfrac{48}{5}=6 \\
& \Rightarrow \dfrac{x}{2}=6-\dfrac{48}{5} \\
& \Rightarrow \dfrac{x}{2}=\dfrac{30-48}{5} \\
& \Rightarrow \dfrac{x}{2}=\dfrac{-18}{5} \\
& \Rightarrow x=\dfrac{-36}{5} \\
\end{align}$
So, the solution of the equations $\dfrac{x}{2}+\dfrac{y}{3}=6$ and $\dfrac{x}{3}+\dfrac{y}{2}=12$ is $x=\dfrac{-36}{5}$ and $y=\dfrac{144}{5}$.
Note: The equations can also be brought to linear form. Multiplying both the equations by ‘6’ we obtain the equations as $3x+2y=36$ and $2x+3y=72$. Now, the equations can be solved by equating the coefficients of ‘x’ or ‘y’ and then putting the value of one of them in any of the equations to obtain the other one.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Trending doubts
Which places in India experience sunrise first and class 9 social science CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Write the 6 fundamental rights of India and explain in detail

Difference Between Plant Cell and Animal Cell

What is the Full Form of ISI and RAW

Golden Revolution is related to AFood production BOil class 9 social science CBSE


