
How do you solve \[\dfrac{{\sin 8A\cos A - \sin 6A\cos 3A}}{{\cos 2A\cos A - \sin 3A\sin 4A}} = \tan 2A\] ?
Answer
525.3k+ views
Hint: To solve any problem involving trigonometric we need to remember all the identities. Here we take LHS and we simplify it and we show that it is equal to RHS. To solve this we need to know the formula of \[2\sin A\cos B\] , \[2\cos A\sin B\] , \[2\cos A\cos B\] and \[2\sin A\sin B\] . We also know that the tangent is the ratio of sine to cosine function. Using this we can solve the given problem.
Complete step by step solution:
Given,
\[\dfrac{{\sin 8A\cos A - \sin 6A\cos 3A}}{{\cos 2A\cos A - \sin 3A\sin 4A}} = \tan 2A\]
Now \[LHS = \dfrac{{\sin 8A\cos A - \sin 6A\cos 3A}}{{\cos 2A\cos A - \sin 3A\sin 4A}}\] and \[RHS = \tan 2A\] .
We have the formulas,
\[
2\sin A\cos B = \sin (A + B) + \sin (A - B){\text{ }} - - - - (1) \\
2\cos A\sin B = \sin (A + B) - \sin (A - B){\text{ }} - - - - (2) \\
2\cos A\cos B = \cos (A + B) + \cos (A - B){\text{ }} - - - - (3) \\
2\sin A\sin B = \cos (A - B) - \cos (A + B){\text{ }} - - - - (4) \;
\]
Now we take LHS,
\[LHS = \dfrac{{\sin 8A\cos A - \sin 6A\cos 3A}}{{\cos 2A\cos A - \sin 3A\sin 4A}}\]
Now multiply the numerator and the denominator by 2, we have
\[ = \dfrac{{2\sin 8A\cos A - 2\sin 6A\cos 3A}}{{2\cos 2A\cos A - 2\sin 3A\sin 4A}}\]
Now applying the formula we have,
\[ = \dfrac{{\left( {\sin (8A + A) + \sin (8A - A)} \right) - \left( {\sin (6A + 3A) + \sin (6A - 3A)} \right)}}{{\left( {\cos \left( {2A + A} \right) + \cos \left( {2A - A} \right)} \right) - \left( {\cos \left( {3A - 4A} \right) - \cos \left( {3A + 4A} \right)} \right)}}\]
In the numerator we applied formula (1) and in the denominator we applies formula (3) and (4).
\[ = \dfrac{{\left( {\sin (9A) + \sin (7A)} \right) - \left( {\sin (9A) + \sin (3A)} \right)}}{{\left( {\cos \left( {3A} \right) + \cos \left( A \right)} \right) - \left( {\cos \left( { - A} \right) - \cos \left( {7A} \right)} \right)}}\]
We know \[\cos \left( { - \theta } \right) = \cos \left( \theta \right)\] .
\[ = \dfrac{{\sin (9A) + \sin (7A) - \sin (9A) - \sin (3A)}}{{\cos \left( {3A} \right) + \cos \left( A \right) + \cos \left( {7A} \right) - \cos \left( A \right)}}\]
Cancelling the terms we have,
\[ = \dfrac{{\sin (7A) - \sin (3A)}}{{\cos \left( {3A} \right) + \cos \left( {7A} \right)}}\]
\[ = \dfrac{{\sin (5A + 2A) - \sin (5A - 2A)}}{{\cos \left( {5A - 2A} \right) + \cos \left( {5A + 2A} \right)}}\]
Again Applying the formula (2) in the numerator and formula (3)
\[ = \dfrac{{2\cos (5A)\sin (2A)}}{{2\cos (5A)\cos (2A)}}\]
\[ = \dfrac{{\sin (2A)}}{{\cos (2A)}}\]
By the definition of tangent we have,
\[ = \tan \left( {2A} \right)\]
\[ = RHS\] .
Thus we have \[\dfrac{{\sin 8A\cos A - \sin 6A\cos 3A}}{{\cos 2A\cos A - \sin 3A\sin 4A}} = \tan 2A\] .
Note: Trigonometric functions are those functions that tell us the relation between the three sides of a right-angled triangle. Sine, cosine, tangent, cosecant, secant and cotangent are the six types of trigonometric functions. A graph is divided into four quadrants, all the trigonometric functions are positive in the first quadrant, all the trigonometric functions are negative in the second quadrant except sine and cosine functions, tangent and cotangent are positive in the third quadrant while all others are negative and similarly all the trigonometric functions are negative in the fourth quadrant except cosine and secant.
Complete step by step solution:
Given,
\[\dfrac{{\sin 8A\cos A - \sin 6A\cos 3A}}{{\cos 2A\cos A - \sin 3A\sin 4A}} = \tan 2A\]
Now \[LHS = \dfrac{{\sin 8A\cos A - \sin 6A\cos 3A}}{{\cos 2A\cos A - \sin 3A\sin 4A}}\] and \[RHS = \tan 2A\] .
We have the formulas,
\[
2\sin A\cos B = \sin (A + B) + \sin (A - B){\text{ }} - - - - (1) \\
2\cos A\sin B = \sin (A + B) - \sin (A - B){\text{ }} - - - - (2) \\
2\cos A\cos B = \cos (A + B) + \cos (A - B){\text{ }} - - - - (3) \\
2\sin A\sin B = \cos (A - B) - \cos (A + B){\text{ }} - - - - (4) \;
\]
Now we take LHS,
\[LHS = \dfrac{{\sin 8A\cos A - \sin 6A\cos 3A}}{{\cos 2A\cos A - \sin 3A\sin 4A}}\]
Now multiply the numerator and the denominator by 2, we have
\[ = \dfrac{{2\sin 8A\cos A - 2\sin 6A\cos 3A}}{{2\cos 2A\cos A - 2\sin 3A\sin 4A}}\]
Now applying the formula we have,
\[ = \dfrac{{\left( {\sin (8A + A) + \sin (8A - A)} \right) - \left( {\sin (6A + 3A) + \sin (6A - 3A)} \right)}}{{\left( {\cos \left( {2A + A} \right) + \cos \left( {2A - A} \right)} \right) - \left( {\cos \left( {3A - 4A} \right) - \cos \left( {3A + 4A} \right)} \right)}}\]
In the numerator we applied formula (1) and in the denominator we applies formula (3) and (4).
\[ = \dfrac{{\left( {\sin (9A) + \sin (7A)} \right) - \left( {\sin (9A) + \sin (3A)} \right)}}{{\left( {\cos \left( {3A} \right) + \cos \left( A \right)} \right) - \left( {\cos \left( { - A} \right) - \cos \left( {7A} \right)} \right)}}\]
We know \[\cos \left( { - \theta } \right) = \cos \left( \theta \right)\] .
\[ = \dfrac{{\sin (9A) + \sin (7A) - \sin (9A) - \sin (3A)}}{{\cos \left( {3A} \right) + \cos \left( A \right) + \cos \left( {7A} \right) - \cos \left( A \right)}}\]
Cancelling the terms we have,
\[ = \dfrac{{\sin (7A) - \sin (3A)}}{{\cos \left( {3A} \right) + \cos \left( {7A} \right)}}\]
\[ = \dfrac{{\sin (5A + 2A) - \sin (5A - 2A)}}{{\cos \left( {5A - 2A} \right) + \cos \left( {5A + 2A} \right)}}\]
Again Applying the formula (2) in the numerator and formula (3)
\[ = \dfrac{{2\cos (5A)\sin (2A)}}{{2\cos (5A)\cos (2A)}}\]
\[ = \dfrac{{\sin (2A)}}{{\cos (2A)}}\]
By the definition of tangent we have,
\[ = \tan \left( {2A} \right)\]
\[ = RHS\] .
Thus we have \[\dfrac{{\sin 8A\cos A - \sin 6A\cos 3A}}{{\cos 2A\cos A - \sin 3A\sin 4A}} = \tan 2A\] .
Note: Trigonometric functions are those functions that tell us the relation between the three sides of a right-angled triangle. Sine, cosine, tangent, cosecant, secant and cotangent are the six types of trigonometric functions. A graph is divided into four quadrants, all the trigonometric functions are positive in the first quadrant, all the trigonometric functions are negative in the second quadrant except sine and cosine functions, tangent and cotangent are positive in the third quadrant while all others are negative and similarly all the trigonometric functions are negative in the fourth quadrant except cosine and secant.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

