
Solve $\dfrac{{\cot A - 1}}{{2 - {{\sec }^2}A}} = \dfrac{{\cot A}}{{1 + \tan A}}$ .
Answer
483.6k+ views
Hint: In this question, we are given two terms one on the left- hand side and the other on the right- hand side and we have to prove the left-hand side is equal to the right-hand side.
Convert $\cot A$ and $\tan A$ into $\sin A$ and $\cos A$ forms on both sides, and then solve both sides separately until they are equal to each other.
Formula to be used:
$\cot A = \dfrac{{\cos A}}{{\sin A}}$
$\sec A = \dfrac{1}{{\cos A}}$
$\cos 2A = \left( {2{{\cos }^2}A - 1} \right)$
$\cos 2A = {\cos ^2}A - {\sin ^2}A$
${a^2} - {b^2} = \left( {a + b} \right)(a - b)$
Complete step-by-step answer:
Given equation $\dfrac{{\cot A - 1}}{{2 - {{\sec }^2}A}} = \dfrac{{\cot A}}{{1 + \tan A}}$ .
To prove the left-hand side is equal to the right-hand side.
First, consider left-hand side, $\dfrac{{\cot A - 1}}{{2 - {{\sec }^2}A}}$ , and convert it into $\sin A$ and $\cos A$ form, we get, $\dfrac{{\dfrac{{\cos A}}{{\sin A}} - 1}}{{2 - \dfrac{1}{{{{\cos }^2}A}}}}$ .
Taking least common multiple, and solving, $\dfrac{{\left( {\cos A - \sin A} \right){{\cos }^2}A}}{{\left( {2{{\cos }^2}A - 1} \right)\sin A}}$ .
Now, we can write $\cos 2A = \left( {2{{\cos }^2}A - 1} \right)$ in the denominator, we get, $\dfrac{{\left( {\cos A - \sin A} \right){{\cos }^2}A}}{{\cos 2A\sin A}}$ .
Now, write $\cos 2A = {\cos ^2}A - {\sin ^2}A$ , we get, $\dfrac{{\left( {\cos A - \sin A} \right){{\cos }^2}A}}{{\left( {{{\cos }^2}A - {{\sin }^2}A} \right)\sin A}}$ .
Applying the identity ${a^2} - {b^2} = \left( {a + b} \right)(a - b)$ , we get, $\dfrac{{\left( {\cos A - \sin A} \right){{\cos }^2}A}}{{\left( {\cos A - \sin A} \right)\left( {\cos A + \sin A} \right)\sin A}}$ .
On solving, we get, $\dfrac{{{{\cos }^2}A}}{{\left( {\cos A + \sin A} \right)\sin A}}$ .
Now, consider right-hand side, $\dfrac{{\cot A}}{{1 + \tan A}}$ , convert it into $\sin A$ and $\cos A$ form, we get, $\dfrac{{\dfrac{{\cos A}}{{\sin A}}}}{{1 + \dfrac{{\sin A}}{{\cos A}}}}$ .
Taking least common multiple, and solving, $\dfrac{{{{\cos }^2}A}}{{\sin A(\cos A + \sin A)}}$ , which is equal to the left-hand side.
Thus, $\dfrac{{{{\cos }^2}A}}{{\sin A(\cos A + \sin A)}} = \dfrac{{{{\cos }^2}A}}{{\sin A(\cos A + \sin A)}}$ i.e., left-hand side is equal to right-hand side.
Hence, proved.
Note: Alternate way to solve the question is, consider left-hand side, $\dfrac{{\cot A - 1}}{{2 - {{\sec }^2}A}}$ and convert each term into $\tan A$ form, we get, $\dfrac{{\dfrac{1}{{\tan A}} - 1}}{{2 - (1 + {{\tan }^2}A)}}$ , taking least common multiple and solving, we get, $\dfrac{{\dfrac{{1 - \tan A}}{{\tan A}}}}{{1 - {{\tan }^2}A}}$ , which gives, $\dfrac{{1 - \tan A}}{{\tan A(1 - {{\tan }^2}A)}}$ . Now, using the identity, ${a^2} - {b^2} = \left( {a + b} \right)(a - b)$ , $\dfrac{{1 - \tan A}}{{\tan A(1 - \tan A)(1 + \tan A)}}$ which gives $\dfrac{1}{{\tan A\left( {1 + \tan A} \right)}}$ which can also be written as $\dfrac{{\cot A}}{{\left( {1 + \tan A} \right)}}$ , hence, proved.
One must remember the trigonometric identities, to solve such types of questions.
In questions with trigonometric functions, if you don’t find a way of solving the question, then convert both sides into $\cos A$ and $\sin A$ form and simplify.
Convert $\cot A$ and $\tan A$ into $\sin A$ and $\cos A$ forms on both sides, and then solve both sides separately until they are equal to each other.
Formula to be used:
$\cot A = \dfrac{{\cos A}}{{\sin A}}$
$\sec A = \dfrac{1}{{\cos A}}$
$\cos 2A = \left( {2{{\cos }^2}A - 1} \right)$
$\cos 2A = {\cos ^2}A - {\sin ^2}A$
${a^2} - {b^2} = \left( {a + b} \right)(a - b)$
Complete step-by-step answer:
Given equation $\dfrac{{\cot A - 1}}{{2 - {{\sec }^2}A}} = \dfrac{{\cot A}}{{1 + \tan A}}$ .
To prove the left-hand side is equal to the right-hand side.
First, consider left-hand side, $\dfrac{{\cot A - 1}}{{2 - {{\sec }^2}A}}$ , and convert it into $\sin A$ and $\cos A$ form, we get, $\dfrac{{\dfrac{{\cos A}}{{\sin A}} - 1}}{{2 - \dfrac{1}{{{{\cos }^2}A}}}}$ .
Taking least common multiple, and solving, $\dfrac{{\left( {\cos A - \sin A} \right){{\cos }^2}A}}{{\left( {2{{\cos }^2}A - 1} \right)\sin A}}$ .
Now, we can write $\cos 2A = \left( {2{{\cos }^2}A - 1} \right)$ in the denominator, we get, $\dfrac{{\left( {\cos A - \sin A} \right){{\cos }^2}A}}{{\cos 2A\sin A}}$ .
Now, write $\cos 2A = {\cos ^2}A - {\sin ^2}A$ , we get, $\dfrac{{\left( {\cos A - \sin A} \right){{\cos }^2}A}}{{\left( {{{\cos }^2}A - {{\sin }^2}A} \right)\sin A}}$ .
Applying the identity ${a^2} - {b^2} = \left( {a + b} \right)(a - b)$ , we get, $\dfrac{{\left( {\cos A - \sin A} \right){{\cos }^2}A}}{{\left( {\cos A - \sin A} \right)\left( {\cos A + \sin A} \right)\sin A}}$ .
On solving, we get, $\dfrac{{{{\cos }^2}A}}{{\left( {\cos A + \sin A} \right)\sin A}}$ .
Now, consider right-hand side, $\dfrac{{\cot A}}{{1 + \tan A}}$ , convert it into $\sin A$ and $\cos A$ form, we get, $\dfrac{{\dfrac{{\cos A}}{{\sin A}}}}{{1 + \dfrac{{\sin A}}{{\cos A}}}}$ .
Taking least common multiple, and solving, $\dfrac{{{{\cos }^2}A}}{{\sin A(\cos A + \sin A)}}$ , which is equal to the left-hand side.
Thus, $\dfrac{{{{\cos }^2}A}}{{\sin A(\cos A + \sin A)}} = \dfrac{{{{\cos }^2}A}}{{\sin A(\cos A + \sin A)}}$ i.e., left-hand side is equal to right-hand side.
Hence, proved.
Note: Alternate way to solve the question is, consider left-hand side, $\dfrac{{\cot A - 1}}{{2 - {{\sec }^2}A}}$ and convert each term into $\tan A$ form, we get, $\dfrac{{\dfrac{1}{{\tan A}} - 1}}{{2 - (1 + {{\tan }^2}A)}}$ , taking least common multiple and solving, we get, $\dfrac{{\dfrac{{1 - \tan A}}{{\tan A}}}}{{1 - {{\tan }^2}A}}$ , which gives, $\dfrac{{1 - \tan A}}{{\tan A(1 - {{\tan }^2}A)}}$ . Now, using the identity, ${a^2} - {b^2} = \left( {a + b} \right)(a - b)$ , $\dfrac{{1 - \tan A}}{{\tan A(1 - \tan A)(1 + \tan A)}}$ which gives $\dfrac{1}{{\tan A\left( {1 + \tan A} \right)}}$ which can also be written as $\dfrac{{\cot A}}{{\left( {1 + \tan A} \right)}}$ , hence, proved.
One must remember the trigonometric identities, to solve such types of questions.
In questions with trigonometric functions, if you don’t find a way of solving the question, then convert both sides into $\cos A$ and $\sin A$ form and simplify.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

