
Solve \[\dfrac{{{{\cos }^2}33^\circ - {{\cos }^2}57^\circ }}{{\sin 21^\circ - \cos 21^\circ }}\].
(a). \[ - \sqrt 2 \]
(b). \[\dfrac{1}{2}\]
(c). \[\dfrac{1}{{\sqrt 2 }}\]
(d). \[ - \dfrac{1}{2}\]
Answer
603.9k+ views
Hint: We can convert cosine to sine by using the formula \[\cos x = \sin (90^\circ - x)\]. Then use the formula \[{\cos ^2}x - {\sin ^2}x = \cos 2x\]. Then we can write sinA – cosB in the form of cosine alone by introducing a factor of \[\dfrac{1}{{\sqrt 2 }}\]. Then simplify to get the answer.
Complete step-by-step answer:
Let us assign the given expression to the variable A as follows:
\[A = \dfrac{{{{\cos }^2}33^\circ - {{\cos }^2}57^\circ }}{{\sin 21^\circ - \cos 21^\circ }}\]
To simplify this expression, we convert the numerator and denominator purely in terms of cosine alone and then evaluate.
Now, we convert cos57° in terms of sine using the formula \[\cos x = \sin (90^\circ - x)\]. Then we have:
\[A = \dfrac{{{{\cos }^2}33^\circ - {{\sin }^2}(90^\circ - 57^\circ )}}{{\sin 21^\circ - \cos 21^\circ }}\]
Simplifying the above expression, we have:
\[A = \dfrac{{{{\cos }^2}33^\circ - {{\sin }^2}33^\circ }}{{\sin 21^\circ - \cos 21^\circ }}\]
We know that the value of \[{\cos ^2}x - {\sin ^2}x\] is equal to \[\cos 2x\]. Then, we have:
\[A = \dfrac{{\cos (2 \times 33^\circ )}}{{\sin 21^\circ - \cos 21^\circ }}\]
Simplifying the above expression, we have:
\[A = \dfrac{{\cos 66^\circ }}{{\sin 21^\circ - \cos 21^\circ }}\]
Next, we multiply and divide the denominator of the expression by \[\sqrt 2 \]. Then, we have:
\[A = \dfrac{{\cos 66^\circ }}{{\dfrac{{\sqrt 2 }}{{\sqrt 2 }}(\sin 21^\circ - \cos 21^\circ )}}\]
Then, we take the term \[\dfrac{1}{{\sqrt 2 }}\] inside the bracket and multiply with \[\sin
21^\circ \] and \[\cos 21^\circ \].
\[A = \dfrac{{\cos 66^\circ }}{{\sqrt 2 \left( {\dfrac{1}{{\sqrt 2 }}\sin 21^\circ - \dfrac{1}{{\sqrt
2 }}\cos 21^\circ } \right)}}\]
We know that the value of sin45° and cos45° is \[\dfrac{1}{{\sqrt 2 }}\], then, we have:
\[A = \dfrac{{\cos 66^\circ }}{{\sqrt 2 \left( {\sin 45^\circ \sin 21^\circ - \cos 45^\circ \cos
21^\circ } \right)}}\]
We know that \[\cos x\cos y - \sin x\sin y = \cos (x + y)\], then we have the following:
\[A = \dfrac{{\cos 66^\circ }}{{\sqrt 2 \left( { - \cos (45^\circ + 21^\circ )} \right)}}\]
Simplifying the above expression, we have:
\[A = \dfrac{{\cos 66^\circ }}{{\sqrt 2 \left( { - \cos 66^\circ } \right)}}\]
Canceling the common terms, we have:
\[A = \dfrac{1}{{\sqrt 2 \left( { - 1} \right)}}\]
Simplifying, we have:
\[A = - \dfrac{1}{{\sqrt 2 }}\]
Then, the final value of the given expression is \[ - \dfrac{1}{{\sqrt 2 }}\].
Hence, the correct answer is option (c).
Note: It is a tricky question and you can also use the formula \[{a^2} - {b^2} = (a + b)(a - b)\] to evaluate the numerator and then simplify using the sum of cosines.
Complete step-by-step answer:
Let us assign the given expression to the variable A as follows:
\[A = \dfrac{{{{\cos }^2}33^\circ - {{\cos }^2}57^\circ }}{{\sin 21^\circ - \cos 21^\circ }}\]
To simplify this expression, we convert the numerator and denominator purely in terms of cosine alone and then evaluate.
Now, we convert cos57° in terms of sine using the formula \[\cos x = \sin (90^\circ - x)\]. Then we have:
\[A = \dfrac{{{{\cos }^2}33^\circ - {{\sin }^2}(90^\circ - 57^\circ )}}{{\sin 21^\circ - \cos 21^\circ }}\]
Simplifying the above expression, we have:
\[A = \dfrac{{{{\cos }^2}33^\circ - {{\sin }^2}33^\circ }}{{\sin 21^\circ - \cos 21^\circ }}\]
We know that the value of \[{\cos ^2}x - {\sin ^2}x\] is equal to \[\cos 2x\]. Then, we have:
\[A = \dfrac{{\cos (2 \times 33^\circ )}}{{\sin 21^\circ - \cos 21^\circ }}\]
Simplifying the above expression, we have:
\[A = \dfrac{{\cos 66^\circ }}{{\sin 21^\circ - \cos 21^\circ }}\]
Next, we multiply and divide the denominator of the expression by \[\sqrt 2 \]. Then, we have:
\[A = \dfrac{{\cos 66^\circ }}{{\dfrac{{\sqrt 2 }}{{\sqrt 2 }}(\sin 21^\circ - \cos 21^\circ )}}\]
Then, we take the term \[\dfrac{1}{{\sqrt 2 }}\] inside the bracket and multiply with \[\sin
21^\circ \] and \[\cos 21^\circ \].
\[A = \dfrac{{\cos 66^\circ }}{{\sqrt 2 \left( {\dfrac{1}{{\sqrt 2 }}\sin 21^\circ - \dfrac{1}{{\sqrt
2 }}\cos 21^\circ } \right)}}\]
We know that the value of sin45° and cos45° is \[\dfrac{1}{{\sqrt 2 }}\], then, we have:
\[A = \dfrac{{\cos 66^\circ }}{{\sqrt 2 \left( {\sin 45^\circ \sin 21^\circ - \cos 45^\circ \cos
21^\circ } \right)}}\]
We know that \[\cos x\cos y - \sin x\sin y = \cos (x + y)\], then we have the following:
\[A = \dfrac{{\cos 66^\circ }}{{\sqrt 2 \left( { - \cos (45^\circ + 21^\circ )} \right)}}\]
Simplifying the above expression, we have:
\[A = \dfrac{{\cos 66^\circ }}{{\sqrt 2 \left( { - \cos 66^\circ } \right)}}\]
Canceling the common terms, we have:
\[A = \dfrac{1}{{\sqrt 2 \left( { - 1} \right)}}\]
Simplifying, we have:
\[A = - \dfrac{1}{{\sqrt 2 }}\]
Then, the final value of the given expression is \[ - \dfrac{1}{{\sqrt 2 }}\].
Hence, the correct answer is option (c).
Note: It is a tricky question and you can also use the formula \[{a^2} - {b^2} = (a + b)(a - b)\] to evaluate the numerator and then simplify using the sum of cosines.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
The shortest day of the year in India

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What is the missing number in the sequence 259142027 class 10 maths CBSE

