
How do you solve \[\dfrac{2}{3x}+\dfrac{2}{3}=\dfrac{8}{x+6}\]?
Answer
561.9k+ views
Hint: To solve the given equation we will need given properties, first is the addition of fractions. Sum of fractions \[\dfrac{a}{b}\] and \[\dfrac{c}{d}\] is evaluated as \[\Rightarrow \dfrac{a}{b}+\dfrac{c}{d}=\dfrac{ad+bc}{bd}\]. The expression \[(a+b)(c+d)\] can be written in expanded form as \[ac+ad+bc+bd\]. We should also remember that for a quadratic equation \[a{{x}^{2}}+bx+c=0\], here \[a,b,c\in \] Real numbers. Using the formula method, the roots of the equation are \[x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}\].
Complete step by step answer:
The given equation is \[\dfrac{2}{3x}+\dfrac{2}{3}=\dfrac{8}{x+6}\], we have to find the value of x which satisfies this equality.
\[\Rightarrow \dfrac{2}{3x}+\dfrac{2}{3}=\dfrac{8}{x+6}\]
Using the addition of fractions in LHS of the above equation, we get
\[\Rightarrow \dfrac{2\times 3+2\times 3x}{3x\times 3}=\dfrac{8}{x+6}\]
\[\Rightarrow \dfrac{6+6x}{9x}=\dfrac{8}{x+6}\]
Multiplying \[9x(x+6)\] to both sides of the equation, we get,
\[\Rightarrow \left( \dfrac{6+6x}{9x} \right)\times 9x(x+6)=\left( \dfrac{8}{x+6} \right)\times 9x(x+6)\]
\[\Rightarrow (6+6x)(x+6)=8\times 9x\]
We know that the expression \[(a+b)(c+d)\] can be written in expanded form \[ac+ad+bc+bd\]. Using this method, the LHS of the above equation can be written as follows
\[\Rightarrow (6+6x)(x+6)=8\times 9x\]
\[\begin{align}
& \Rightarrow 6x+6\times 6+6{{x}^{2}}+6x\times 6=72x \\
& \Rightarrow 6{{x}^{2}}+42x+36=72x \\
\end{align}\]
\[\Rightarrow 6{{x}^{2}}+42x+36=72x\]
Subtracting \[72x\] from both sides of the above equation, we get
\[\begin{align}
& \Rightarrow 6{{x}^{2}}+42x+36-72x=72x-72x \\
& \Rightarrow 6{{x}^{2}}-30x+36=0 \\
\end{align}\]
Multiplying \[\dfrac{1}{6}\] to both sides of the equation, we get
\[\begin{align}
& \Rightarrow \left( 6{{x}^{2}}-30x+36 \right)\dfrac{1}{6}=0\times \dfrac{1}{6} \\
& \Rightarrow \left( 6{{x}^{2}} \right)\dfrac{1}{6}-\left( 30x \right)\dfrac{1}{6}+\left( 36 \right)\dfrac{1}{6}=0 \\
& \Rightarrow {{x}^{2}}-5x+6=0 \\
\end{align}\]
Comparing with the general equation of quadratic \[a{{x}^{2}}+bx+c=0\], here \[a=1,b=-5\And c=6\]
So, using the formula method the roots of the equation are \[x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}\] , we substitute the value of a, b, and c here. We get
\[\Rightarrow x=\dfrac{-\left( -5 \right)\pm \sqrt{{{\left( -5 \right)}^{2}}-4\times 1\times 6}}{2\times 1}\]
\[\begin{align}
& \Rightarrow x=\dfrac{5\pm \sqrt{25-24}}{2} \\
& \Rightarrow x=\dfrac{5\pm \sqrt{1}}{2} \\
& \Rightarrow x=\dfrac{5\pm 1}{2} \\
\end{align}\]
\[\Rightarrow x=\dfrac{5+1}{2}\] or \[x=\dfrac{5-1}{2}\]
\[\Rightarrow x=3\] or \[x=2\]
The solution of the given equation is \[x=3\] or \[x=2\].
Note: We can check whether our answer is correct or not by substituting the values of \[x\]in the given equation.
Substitute \[x=3\] in the given equation, LHS =\[\dfrac{2}{3\times 3}+\dfrac{2}{3}=\dfrac{2}{9}+\dfrac{2}{3}=\dfrac{8}{9}\] and RHS = \[\dfrac{8}{3+6}=\dfrac{8}{9}\]. \[\therefore LHS=RHS\], hence it is the solution of the equation.
Substitute \[x=2\] in the given equation, LHS = \[\dfrac{2}{3\times 2}+\dfrac{2}{3}=\dfrac{2}{6}+\dfrac{2}{3}=1\] and RHS = \[\dfrac{8}{2+6}=1\]. \[\therefore LHS=RHS\], hence it is the solution of the equation.
Complete step by step answer:
The given equation is \[\dfrac{2}{3x}+\dfrac{2}{3}=\dfrac{8}{x+6}\], we have to find the value of x which satisfies this equality.
\[\Rightarrow \dfrac{2}{3x}+\dfrac{2}{3}=\dfrac{8}{x+6}\]
Using the addition of fractions in LHS of the above equation, we get
\[\Rightarrow \dfrac{2\times 3+2\times 3x}{3x\times 3}=\dfrac{8}{x+6}\]
\[\Rightarrow \dfrac{6+6x}{9x}=\dfrac{8}{x+6}\]
Multiplying \[9x(x+6)\] to both sides of the equation, we get,
\[\Rightarrow \left( \dfrac{6+6x}{9x} \right)\times 9x(x+6)=\left( \dfrac{8}{x+6} \right)\times 9x(x+6)\]
\[\Rightarrow (6+6x)(x+6)=8\times 9x\]
We know that the expression \[(a+b)(c+d)\] can be written in expanded form \[ac+ad+bc+bd\]. Using this method, the LHS of the above equation can be written as follows
\[\Rightarrow (6+6x)(x+6)=8\times 9x\]
\[\begin{align}
& \Rightarrow 6x+6\times 6+6{{x}^{2}}+6x\times 6=72x \\
& \Rightarrow 6{{x}^{2}}+42x+36=72x \\
\end{align}\]
\[\Rightarrow 6{{x}^{2}}+42x+36=72x\]
Subtracting \[72x\] from both sides of the above equation, we get
\[\begin{align}
& \Rightarrow 6{{x}^{2}}+42x+36-72x=72x-72x \\
& \Rightarrow 6{{x}^{2}}-30x+36=0 \\
\end{align}\]
Multiplying \[\dfrac{1}{6}\] to both sides of the equation, we get
\[\begin{align}
& \Rightarrow \left( 6{{x}^{2}}-30x+36 \right)\dfrac{1}{6}=0\times \dfrac{1}{6} \\
& \Rightarrow \left( 6{{x}^{2}} \right)\dfrac{1}{6}-\left( 30x \right)\dfrac{1}{6}+\left( 36 \right)\dfrac{1}{6}=0 \\
& \Rightarrow {{x}^{2}}-5x+6=0 \\
\end{align}\]
Comparing with the general equation of quadratic \[a{{x}^{2}}+bx+c=0\], here \[a=1,b=-5\And c=6\]
So, using the formula method the roots of the equation are \[x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}\] , we substitute the value of a, b, and c here. We get
\[\Rightarrow x=\dfrac{-\left( -5 \right)\pm \sqrt{{{\left( -5 \right)}^{2}}-4\times 1\times 6}}{2\times 1}\]
\[\begin{align}
& \Rightarrow x=\dfrac{5\pm \sqrt{25-24}}{2} \\
& \Rightarrow x=\dfrac{5\pm \sqrt{1}}{2} \\
& \Rightarrow x=\dfrac{5\pm 1}{2} \\
\end{align}\]
\[\Rightarrow x=\dfrac{5+1}{2}\] or \[x=\dfrac{5-1}{2}\]
\[\Rightarrow x=3\] or \[x=2\]
The solution of the given equation is \[x=3\] or \[x=2\].
Note: We can check whether our answer is correct or not by substituting the values of \[x\]in the given equation.
Substitute \[x=3\] in the given equation, LHS =\[\dfrac{2}{3\times 3}+\dfrac{2}{3}=\dfrac{2}{9}+\dfrac{2}{3}=\dfrac{8}{9}\] and RHS = \[\dfrac{8}{3+6}=\dfrac{8}{9}\]. \[\therefore LHS=RHS\], hence it is the solution of the equation.
Substitute \[x=2\] in the given equation, LHS = \[\dfrac{2}{3\times 2}+\dfrac{2}{3}=\dfrac{2}{6}+\dfrac{2}{3}=1\] and RHS = \[\dfrac{8}{2+6}=1\]. \[\therefore LHS=RHS\], hence it is the solution of the equation.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who gave "Inqilab Zindabad" slogan?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Who is the Brand Ambassador of Incredible India?

