
How do you solve \[\dfrac{1}{{x + 3}} + \dfrac{1}{{x + 5}} = 1\]?
Answer
537k+ views
Hint: Given a rational expression. We have to find the solution of the equation. First, we will solve the rational expression on the left hand side of the equation. Then, cross multiply the terms. Then, multiply the linear polynomial on the right hand side of the expression. Then, we will rewrite the expression in the standard form of quadratic equation. Then, find the solution of the quadratic equation, by applying the quadratic formula.
Formula used:
The quadratic formula to solve the quadratic equation of the form \[a{x^2} + bx + c = 0\]
\[x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\]
Complete step by step solution:
We are given the equation, \[\dfrac{1}{{x + 3}} + \dfrac{1}{{x + 5}} = 1\]
Rewrite the expression by representing each term over the common denominator.
\[ \Rightarrow \dfrac{1}{{x + 3}} \cdot \dfrac{{x + 5}}{{x + 5}} + \dfrac{1}{{x + 5}} \cdot \dfrac{{x + 3}}{{x + 3}} = 1\]
Multiply the terms we get:
\[ \Rightarrow \dfrac{{x + 5}}{{\left( {x + 3} \right)\left( {x + 5} \right)}} + \dfrac{{x + 3}}{{\left( {x + 3} \right)\left( {x + 5} \right)}} = 1\]
Add the numerator over the common denominator.
\[ \Rightarrow \dfrac{{x + 5 + x + 3}}{{\left( {x + 3} \right)\left( {x + 5} \right)}} = 1\]
On combining like terms, we get:
\[ \Rightarrow \dfrac{{2x + 8}}{{\left( {x + 3} \right)\left( {x + 5} \right)}} = 1\]
Multiply each side of the equation by \[\left( {x + 3} \right)\left( {x + 5} \right)\]
\[ \Rightarrow \dfrac{{2x + 8}}{{\left( {x + 3} \right)\left( {x + 5} \right)}} \times \left( {x + 3} \right)\left( {x + 5} \right) = 1 \times \left( {x + 3} \right)\left( {x + 5} \right)\]
On combining like terms, we get:
\[ \Rightarrow 2x + 8 = {x^2} + 3x + 5x + 15\]
Simplify the equation, we get:
\[ \Rightarrow 2x + 8 = {x^2} + 8x + 15\]
Subtract both sides of equation by \[2x\]
\[ \Rightarrow 2x + 8 - 2x = {x^2} + 8x - 2x + 15\]
On combining like terms, we get:
\[ \Rightarrow 8 = {x^2} + 6x + 15\]
Subtract 8 from both sides of the equation.
\[ \Rightarrow 8 - 8 = {x^2} + 6x + 15 - 8\]
On combining like terms, we get:
\[ \Rightarrow 0 = {x^2} + 6x + 7\]
Now, apply the quadratic formula, \[x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\] to solve the equation.
Here, \[a = 1,b = 6,c = 7\]. Substitute the values into the quadratic formula.
Thus, the solution is \[ \Rightarrow x = \dfrac{{ - 6 \pm \sqrt {{6^2} - 4 \times 1 \times 7} }}{{2 \times 1}}\]
\[ \Rightarrow x = \dfrac{{ - 6 \pm \sqrt {36 - 28} }}{2}\]
On simplifying the expression further, we get:
\[ \Rightarrow x = \dfrac{{ - 6 \pm \sqrt 8 }}{2}\]
On simplifying the expression, we get:
\[ \Rightarrow x = \dfrac{{ - 6 \pm 2\sqrt 2 }}{2}\]
Cancel out the common terms from numerator and denominator.
\[ \Rightarrow x = - 3 \pm \sqrt 2 \]
Final answer: Hence the solution of the equation are \[x = - 3 + \sqrt 2 \] and \[x = - 3 - \sqrt 2 \].
Note: Please note that in such types of questions students can check the answer by substituting back the final answer into the given equation and determine whether LHS is equal to RHS.
Here, substitute \[x = - 3 + \sqrt 2 \] into the given equation.
\[\dfrac{1}{{ - 3 + \sqrt 2 + 3}} + \dfrac{1}{{ - 3 + \sqrt 2 + 5}} = 1\]
\[\dfrac{1}{{\sqrt 2 }} + \dfrac{1}{{2 + \sqrt 2 }} = 1\]
\[\dfrac{{2 + \sqrt 2 + \sqrt 2 }}{{\sqrt 2 \left( {2 + \sqrt 2 } \right)}} = 1\]
\[\dfrac{{2 + 2\sqrt 2 }}{{2\sqrt 2 + 2}} = 1\]
\[1 = 1\]
Therefore, LHS is equal to RHS.
Similarly, substitute \[x = - 3 - \sqrt 2 \] into the given equation, we get:
\[\dfrac{1}{{ - 3 - \sqrt 2 + 3}} + \dfrac{1}{{ - 3 - \sqrt 2 + 5}} = 1\]
\[\dfrac{1}{{ - \sqrt 2 }} + \dfrac{1}{{2 - \sqrt 2 }} = 1\]
\[\dfrac{{2 - \sqrt 2 - \sqrt 2 }}{{ - \sqrt 2 \left( {2 - \sqrt 2 } \right)}} = 1\]
\[\dfrac{{2 - 2\sqrt 2 }}{{ - 2\sqrt 2 + 2}} = 1\]
\[1 = 1\]
Therefore, LHS is equal to RHS.
Formula used:
The quadratic formula to solve the quadratic equation of the form \[a{x^2} + bx + c = 0\]
\[x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\]
Complete step by step solution:
We are given the equation, \[\dfrac{1}{{x + 3}} + \dfrac{1}{{x + 5}} = 1\]
Rewrite the expression by representing each term over the common denominator.
\[ \Rightarrow \dfrac{1}{{x + 3}} \cdot \dfrac{{x + 5}}{{x + 5}} + \dfrac{1}{{x + 5}} \cdot \dfrac{{x + 3}}{{x + 3}} = 1\]
Multiply the terms we get:
\[ \Rightarrow \dfrac{{x + 5}}{{\left( {x + 3} \right)\left( {x + 5} \right)}} + \dfrac{{x + 3}}{{\left( {x + 3} \right)\left( {x + 5} \right)}} = 1\]
Add the numerator over the common denominator.
\[ \Rightarrow \dfrac{{x + 5 + x + 3}}{{\left( {x + 3} \right)\left( {x + 5} \right)}} = 1\]
On combining like terms, we get:
\[ \Rightarrow \dfrac{{2x + 8}}{{\left( {x + 3} \right)\left( {x + 5} \right)}} = 1\]
Multiply each side of the equation by \[\left( {x + 3} \right)\left( {x + 5} \right)\]
\[ \Rightarrow \dfrac{{2x + 8}}{{\left( {x + 3} \right)\left( {x + 5} \right)}} \times \left( {x + 3} \right)\left( {x + 5} \right) = 1 \times \left( {x + 3} \right)\left( {x + 5} \right)\]
On combining like terms, we get:
\[ \Rightarrow 2x + 8 = {x^2} + 3x + 5x + 15\]
Simplify the equation, we get:
\[ \Rightarrow 2x + 8 = {x^2} + 8x + 15\]
Subtract both sides of equation by \[2x\]
\[ \Rightarrow 2x + 8 - 2x = {x^2} + 8x - 2x + 15\]
On combining like terms, we get:
\[ \Rightarrow 8 = {x^2} + 6x + 15\]
Subtract 8 from both sides of the equation.
\[ \Rightarrow 8 - 8 = {x^2} + 6x + 15 - 8\]
On combining like terms, we get:
\[ \Rightarrow 0 = {x^2} + 6x + 7\]
Now, apply the quadratic formula, \[x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\] to solve the equation.
Here, \[a = 1,b = 6,c = 7\]. Substitute the values into the quadratic formula.
Thus, the solution is \[ \Rightarrow x = \dfrac{{ - 6 \pm \sqrt {{6^2} - 4 \times 1 \times 7} }}{{2 \times 1}}\]
\[ \Rightarrow x = \dfrac{{ - 6 \pm \sqrt {36 - 28} }}{2}\]
On simplifying the expression further, we get:
\[ \Rightarrow x = \dfrac{{ - 6 \pm \sqrt 8 }}{2}\]
On simplifying the expression, we get:
\[ \Rightarrow x = \dfrac{{ - 6 \pm 2\sqrt 2 }}{2}\]
Cancel out the common terms from numerator and denominator.
\[ \Rightarrow x = - 3 \pm \sqrt 2 \]
Final answer: Hence the solution of the equation are \[x = - 3 + \sqrt 2 \] and \[x = - 3 - \sqrt 2 \].
Note: Please note that in such types of questions students can check the answer by substituting back the final answer into the given equation and determine whether LHS is equal to RHS.
Here, substitute \[x = - 3 + \sqrt 2 \] into the given equation.
\[\dfrac{1}{{ - 3 + \sqrt 2 + 3}} + \dfrac{1}{{ - 3 + \sqrt 2 + 5}} = 1\]
\[\dfrac{1}{{\sqrt 2 }} + \dfrac{1}{{2 + \sqrt 2 }} = 1\]
\[\dfrac{{2 + \sqrt 2 + \sqrt 2 }}{{\sqrt 2 \left( {2 + \sqrt 2 } \right)}} = 1\]
\[\dfrac{{2 + 2\sqrt 2 }}{{2\sqrt 2 + 2}} = 1\]
\[1 = 1\]
Therefore, LHS is equal to RHS.
Similarly, substitute \[x = - 3 - \sqrt 2 \] into the given equation, we get:
\[\dfrac{1}{{ - 3 - \sqrt 2 + 3}} + \dfrac{1}{{ - 3 - \sqrt 2 + 5}} = 1\]
\[\dfrac{1}{{ - \sqrt 2 }} + \dfrac{1}{{2 - \sqrt 2 }} = 1\]
\[\dfrac{{2 - \sqrt 2 - \sqrt 2 }}{{ - \sqrt 2 \left( {2 - \sqrt 2 } \right)}} = 1\]
\[\dfrac{{2 - 2\sqrt 2 }}{{ - 2\sqrt 2 + 2}} = 1\]
\[1 = 1\]
Therefore, LHS is equal to RHS.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest States of India?

What is the theme or message of the poem The road not class 9 english CBSE

Define development

The winter rain in Chennai is caused by A SouthWest class 9 social science CBSE

Give 5 examples of refraction of light in daily life

The voting age has been reduced from 21 to 18 by the class 9 social science CBSE

